Artificial Neural
Networks with Java

Dr Prof Engr Mr Santosh Kumar
Senior Technical Officer, Hindustan Aeronautics Limited

Indian Institute of Science (Research University),Bengaluru, Karnataka, India

Simulation of human intelligence in machines that are programmed to think like
humans and mimic their actions

Artificial Neural
Networks with Java

Artificial Neural
Networks with Java

Tools for Building Neural
Network Applications

Indian Institute of Science®

Stamp

Stamp

FreeText
Dr Prof Engr Mr Santosh Kumar

Rectangle

Stamp

Introduction

Artificial intelligence is a rapidly advancing area of computer science. Since the
invention of computers, we have observed an intriguing phenomenon. Tasks that are
difficult for a human (such as heavy computations, searching, memorizing large volumes
of data, and so on) are easily done by computers, while tasks that humans are naturally
able to do quickly (such as recognizing partially covered objects, intelligence, reasoning,
creativity, invention, understanding speech, scientific research, and so on) are difficult
for computers.

Artificial intelligence as a discipline was invented in 1950s. Initially it failed because
of a lack of backpropagation and an automated means of training. In the 1980s, it failed
because of an inability to form its own internal representations, solved later by deep
learning and the availability of more powerful computers.

A new nonlinear network architecture was developed after that second failure,
and the tremendous increase in machines’ computing power finally contributed to
the phenomenal success of Al in 1990s. Gradually, Al became capable of solving many
industrial-grade problems such as image recognition, speech recognition, natural
language processing, pattern recognition, prediction, classification, self-driving cars,
robotic automation, and so on.

The tremendous success of Al has recently triggered all types of unwarranted
speculations. You will find discussions about robots of the near future matching
and exceeding the intelligence of humans. However, currently, Al is a set of clever
mathematical and processing methods that let computers learn from the data they
process and apply this knowledge to solve many important tasks. A lot of things that
belong to humans such as intelligence, emotion, creativity, feeling, reasoning, and so on,
are still outside the possibility of Al

Still, AT is rapidly changing. In recent years, computers have become so good at
playing chess that they reliably beat their human counterparts. That is not surprising,
because their creators taught the programs centuries of accumulated human experience
in chess. Now, machines compete against each other in the world computer chess
championship. One of the best chess-playing programs, called Stockfish 8, won the
world computer chess championship in 2016.

Dy Profl Engr Mr Santosh Kumar

INTRODUCTION

In 2017 Google developed a chess-playing program called AlphaZero, which
defeated the Stockfish 8 program in the 2017 world computer chess championship. The
amazing part of this is that no one taught AlphaZero the chess strategies, like had been
done during the development of other chess-playing programs. Instead, it used the
latest machine learning principles to teach itself chess by playing against itself. It took
the program four hours of learning chess strategies (while playing against itself) to beat
Stockfish 8. Self-teaching is the new milestone achievement of artificial intelligence.

Al has many branches. This book is dedicated to one of them: neural networks.
Neural networks enable computers to learn from observational data and make
predictions based on that knowledge. Specifically, this book is about neural network
training and using it for function approximation, prediction, and classification.

What This Book Covers

This practical how-to book covers many aspects of developing neural network
applications. It starts from scratch explaining how neural networks work and proceeds
with an example of training a small neural network, making all the calculations
manually. This book covers the internals of front and backward propagation and
facilitates understanding of the main principles of neural network processing. It quickly
familiarizes you with all the basic principles of the front and backward propagation
techniques. The book also teaches you how to prepare data to be used in neural network
development and suggests various data preparation methods for many unconventional
neural network processing tasks.

The next big topic discussed in the book is using Java for neural network processing.
Most books that teach Al use Python as the developing language; however, Java is the
most widely used programming language. It is faster than Python, and it allows you to
develop projects on one computer and run them on many different machines supporting
the Java environment. In addition, when artificial intelligence processing is part of an
enterprise application, no other languages can compete with Java.

The book uses a Java framework called Encog and shows all the details of how to use
it for developing large-scale neural network applications. The book also discusses the
difficulties of approximating complex noncontinuous functions as well as continuous
functions with complex topologies, and it introduces my micro-batch method that solves
this issue.

Xviii

Dy Profl Engr Mr Santosh Kumar

INTRODUCTION

The step-by-step approach includes plenty of examples, diagrams, and screenshots
to facilitate your learning experience. Each topic discussed in the book comes with
corresponding examples of practical development, with many tips for each topic.

All the examples in this book were developed for the Windows 7/10 platform,
although being developed in Java, they can run on any Java-supporting environment.
All the Java tools described in this book are free to use and can be downloaded from the
Internet.

Who This Book Is For?

The book is for professional developers who are interested in learning neural network
programming in a Java environment. The book should also be of interest to more
experienced Al developers who will find here more advanced topics and tips related to
the development of more complex neural network applications. The book also includes
my latest research of neural network approximation of noncontinuous functions and
continuous functions with complex topologies.

Dy Profl Engr Mr Santosh Kumar

Introduction to Artificial Neural Networks

What is an Artificial Neural Network ?

- It is a computational system inspired by the
Structure
Processing Method
Learning Ability

of a biological brain

- Characteristics of Artificial Neural Networks

A large number of very simple processing neuron-lik e processing
elements

A large number of weighted connections between the elements

Distributed representation of knowledge over the connections

Knowledge 1s acquired by network through a learning process

Dl TR o

D¥ Piold Erlr:;r f Saniosh Kumar

=9 .
Why Artificial Neural Networks ?

- Massive Parallelism

- Distributed representation
- Learning ability

- Generalization ablity

- Fault tolerance

Elements of Artificial Neural Networks

- Processing Units
- Topology
- Learning Algorithm

Processing Units

D¥ Piold Ellr:;r f Saniosh Kumar

=3 =

7 !

Node Output: O; = f(net,)
 Activation Function

f(net)

1.0

) net’.

- An example

D¥ Piold Erlr:;r f Saniosh Kumar

Neural networks

%

S

Feed-forward networks

I Recurrent/feedback networks

7

o

\

z

\

=

Single-layer
perceptron

Multilayer
perceptron

Radial Basis
Function nets

Competitive
networks

Kohonen's
sCoM

Hopfield
network

ART models

{
%E

|

=7

Z s

5

A

Learning

- Learn the connection weights from a set of training examples

- Different network architectures required different learning algo-

rithms

Supervised Learning

The network is provided with a correct answer (output) for every
mput pattern

Weights are determined to allow the network to produce answers
as close as possible to the known correct answers

The back-propagation algorithm belongs into this category

Dy Profl Engr Mr Santosh Kumar

-
L]
DA
] Q 4
S] R
| - S
. g . OeEmEEEOE
. - NSl [aEEErT I
. ﬂ1 - ERCO00CEEE
e00000000E
L —~B00000000
O - 0000Cee
oooommo
EREEEC
(o)

B
i

losh Kumar

Dy Profl Engr Mr San

Unsupervised Learning

Does not require a correct answer associated with each input pat-
tern in the training set

Explores the underlying structure in the data, or correlations
between patterns in the data, and organizes patterns into cate-
gories from these correlations

The Kohonen algorithm belongs into this category

Hybrid Learning

Comnines supervised and unsupervised learning

Part of the weights are determined through supervised learning
and the others are obtained through aunsupervised learning

Computational Properties

A single hidden layer feed-forward network with arbitrary sigmoid
hidden layer activation functions can approximate arbitrarily well an
arbitrary mapping from one finite dimensional space to another

Structure

General

Description of Exclusive-OR Classes with
decision regions problem

/\

Half plane

bounded by
hyperplane

=

Three layer

Single layer
/O\ Arbitrary
S ~ (complexity
limited by
number of hidden
Two layer units)
(@]
Arbitrary

(complexity
limited by
number of hidden

units)

Dy Profl Engr Mr Santosh Kumar

 Practical Issues

- Generalization vs Memorization

Good fit Bad fit

How to choose the network size (free parameters)
How many training examples

When to stop training
* Applications

- Pattern Classification

- Clustering/Categorization

- Function approximation

- Prediction/Forecasting

- Optimization

- Content-addressable Memory

- Control

Dy Pl Erlr:;r M Saniosh Kurmar

Cardiogrém R
Pattern afina
T dessifier A
Abnormal
‘\' s . . 0
.\‘
p sl #é}.:\f \ee
;e 2R
: :4_\(. 7 :‘:_'_9./1‘4.-# =
+ - + \ ’a 1
(1
S o Over-fitting to
yeed \ yi noisy training data
lu ..:. J i \ a
(—‘ ;\- \\i X '/’} "/>{" e . e /\
SN /ae\ | ¥ NRCS
Sy . ¢ ey ~ True function
:__ . __,/ T s
@ (3) X
¥ { Stock values /_B\
(“'Kf-ﬁ""-d‘»’. s ;}‘
e ? L0e
' ‘) ; I f\"
: 4 tz f3 ta ther T P
(@ (5)
Airplane partially Retrieved airplane
occluded by clouds

Associative -
memory |
NS

(8)
Load torque
Idle
- : speed
Throttle Engine L.
angle[
Controller [a—
(7

Dr Prof Engr Mr

Saniosh Kumar

-

* Two Successful Applications

- Zipcode Recognition

L

ore

oo
layer H2
12 x 16=192 Re=AE
hidden units Y T

10 output units
fully connected
~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

5x5x8

layer H1

12 x 64 = 768

hidden units
~20,000 links
from 12 kernels

g SiX'5
input

‘ Convert Text to
[NETtalk Pattern

ey

' NETtalk Network |

I\ ; Convert [
\\\\ A'rlalog il ‘ Phoneme ‘
“Hello ... | To
o [/J To Speaker

 Analog Signal 4]

Dy Profl Engr Mr Santosh Kumar

Artificial Neural Networks with Java

Table of Contents

Chapter 1: Learning About Neural NetWOrkscccceussummsssssssssssssnssssssssssnssssssssssasass 1
Biological and ArtifiCial NEUFONS........cccceeueeecrereeecaereereraeseesasasseseeses e s snssssenesessensassenssassssensessans 2
ABHVITION PGS cx0000w0smsms e wamasinios s e o S e e A S R S PR R s 3
N e i e B i b i S o e A i 5

Chapter 2: Internal Mechanics of Neural Network Processing.......ccocucussssssssscsssascas 7
FUNcHon 10 Bp ADRroimatol. ..o s s 7
N ORI ATCIIEOC TG . s ims coomanssvsnigivomnisvsiamasiosomisn e o assieusi ossioson s s N R R RN 9
FORNEIT PSS CARNIENON it i s N o A 10
UTEERIE EROBEBITIEN 0 st i G i 1
MNPUL REBCOI 2.....cneeesnnnssssnxsnssnnasssssassnsynssansunsrusssssnnssanssssssasassnsvasanassassss sassnnnsssasssasansnnsnsssnansssnnsss 12
IR OGO i ot e A S A s st 13
MR s i i B e e S i B i B TR e R s i 14
Backpropagation-PaSs COlCUHENONS' u:uussssssusssusssususssssses uissnssnsssssnsssisssississusisiimeisasssississssss 15
Function Derivative and Function DIVErgent...........coovcrneennccsccsiseress s srs e s 16
Most Commoinly Uset] FUNBION DEIMURIIVES ...y imisss i ssimiie s 17
T U SO ST SN 19

Chapter 3: Manual Neural Network ProcesSing.....cusssssssssssssssassssssssussssssssasssassssnssas 21
Example 1: Manual Approximation of a Function at a Single Point...........ccocevevvcernennneserninns 21
BUNCING TNE NI NI, . cccuiscyasinsisiss s s oo s oo s s e 22

v

O Prof Erlr:;r M Saniosh Kurmar

TABLE OF CONTENTS

FORWAIT -PASS CAICNIAONIN .- co5s5u50ms50mss v s s sssass s s mahais s aen R 24
IO BN LRI s oo ol 8 S K G A A 25
OUEPUL LAYET «....eeoeeeeeeieecasee e sess s sese s se e se e s s e se s e e s e st e e ne s anasasanes 25

Backward-Pass CACMAHON ... 27
Calculating Weight Adjustments for the Qutput Layer NEurons...........couveersmmesssssssesssssansnns 27

Caleulating e AdJuSMENTTON W, .uucissmsosomsmmssscsmesmisssmsomessismisssmssimsssnssvesssosossssis 28

7T U P —. 30

Calculating Weight Adjustments for Hidden-Layer NEUIONScccveeuerreemsssesnsssnsasssssssssssnssessanns 31
Gl it e ATJUSTBIEREN., weicisnssisimsmnssssisinnitisnisismsnssnisstisaibivassisstnsmsssss i 31
Ko IO L N TN TN oo s 32
TR T TS0 T0 — 33
Gall MBI MY ACTUESTTIETOR WL, cvssoscnsousousnmvoionsinstnsisonsisssshesisoensbamsssseomiass 34
Galelgting 1o AdJUSIBRE IR .ot 35
e T T C R —— 36

DO IR N NI Il M0 i o i i v S 36

Going Back t0 the FOrward PaSs...........cceeereeermeecrerieeeseessaeeesaess s e saessesssesassensssenesesssnsassnnes 38
IICHCUBIND. LBUUONE oo i 5 A R S A A A B 38

L LRI o st S SRR SO S S A R RS SS LSSRA 39

Matrix Form of Network CalclatoNcusssnniicsmmssssisssiiosiamsisisssssisssimmmmmms 42

e TN, 42

Mini-Batehies and Sihehastie GIatlento e mnnT 45

ST R R ST R O R R ORI (T RARIRC U R ISR N TR SCLBRRE IR, 46

Chapter 4: Configuring Your Development Environmentccccninnsnnensensssssssnnnes 47

vi

Installing the Java 11 Environment on Your Windows Maching..........cccceverereeeresssrnssesssssserassenes 47
IS ET 0 I BN BN it A A A 50
Ingtalling the ENcOy Java FRAIMBIWNOIK,csumrxemmssmessasismmnsnsassmsmasstnsnsssintosssssnssanrassassansiossnsia 51
i i e g T — 52
SUIMIMAIY...c. e ceeceriererressereerssessess s ssssesasssssassss e rn e ss e e s sasene e e s s e s en s saseneanenaseR e e sanenesansne e nsnnsesenss 53

Dy Profl Engr Mr Santosh Kumar

TABLE OF CONTENTS

Chapter 5: Neural Network Development Using the Java Encog Framework......... 55
Example 2: Function Approximation Using the Java Environment............cccoevvccnincninccennnanns 55
NETWOIK ArCHITECIUIEceeeceeeeeceeeeet et e e e s snem e m s en et nnsa s nne s nnnnes 57
Normalizing the IpUt DAt SOI8c.uasmmissmmmssmimsmeimiiisisieiem s 58
Building the Java Program That Normalizes Both Data Sets ... 58
Building the Neural Network Processing Program...........cccooeneeecreniesennnesenesciesssesssesesesssseseess 69
e O S ———— 77
Bebugaing and Executing the PrOOM «umissinsmiiamsisimmsmmissamnmmaimeimsivis 100
Processing Results for the Training Methodcccssesasesanmmsmsesssssemnssmssssssssssssasasssassesses 101
TOBTINE TIVE TN OO it A b s e 102
JREHRE MBI e s s o o N R s R TE) 106
DINOIKY DEBEF i immnminnssmasm i B s 107
BURVIIARY. coivcvsaiisssmisiininivimnniuoiisiasisiii s s A A S A s St 108

Chapter 6: Neural Network Prediction Outside the Training Range.......cccoceeunsssens 109
Example 3a: Approximating Periodic Functions Outside of the Training Range.............cccceveu... 110
NetwOrk ArChiTeCTENG TO EXCAIMDIE: S8 «uisssinunws owusssosrssnionssmsnisanisssosssoins s ks b i 114
NGO GO T BN B . i it dt i B e B i 114
TESHI A NEMVOI...ocnmanmpnnsnmmmmisas R s 132
Example 3b: Correct Way of Approximating Periodic Functions Outside the
T R o omsrmamm o o T A O R S R TG R 134

Proparing The TrolinE DUER . .. couuisousiisums nssouiesnins s gasnasisiiikoisansiiiasas s asess s tisunssasns 134
NEtoreArCITTachite Tor BRI S...cocimiis i i i o es 137
i R e e || o R — 138

Training Results for EXamPpIE 3D ... ssssssssasssssssssenssssnes 160

Tes1ing Results Tor EXampIo 3D .. it s bt 162
IR it caniniisimaiidisSmriitisiivaominmaiiiosibi 163

Chapter 7: Processing Complex Periodic FUNCHIONScccucvmmennsennenssssnnssssnanssssnns 165
Example 4: Approximation of a Complex Periodic FUNCLION........ccovvreereneerssnsrersnsssassaesasassenses 165
DT T DI IOOIN . st o o e 453N S B R R B G 168

vii

Dv Prof Engr Mr Sanlosh Kumar

TABLE OF CONTENTS

Reflecting Furiction Topology in e Data..........ccsmscsmssomsenismssorsesssssisassansasssssasasssssssasassassns 169
B B A DI s s ms oot s s s A N AT NS R e 176
PrOGIAM COUE «....eeeeereeeeeeeeereesceeesseresesessssasasasesesessssaesseseese s s sssasesesessasssssassasssnsansnesansssensanananes 176
TRAIRINT T8 ORI i i i s s e 200
TR RS RN s s s e e s e e i S e e e e 202
8L 8T T — 205
SR oo S e 206
Chapter 8: Approximating Noncontinuous FUnctions..........ccccuusmmsnssssnsssssnssssssans 207
Example 5: Approximating Noncontinuous FUNCLIONS..........ccceuvvermressrssmsessssessssssessesessssssanses 207
L T — 211
PLOGTRIY DO 5c5050005050500050500 5505505850050 4 5 i e S B s s 212
Code Fragments for t1e Training PrOCESSE: .xusuwsxssssssoissssssisassussusissssasionsisisssisisssasessvisan 226
R AN RORE we. o asionars o e 230
Approximating the Noncontinuous Function Using the Micro-Bach Methodcccooviuevnnens 232
Program Code for Micro-BatCh ProCESSING.......ccueuevierrirerinesmsnisssesiess s enssssasssnsssenens 233
Program GCode Tor the GeICRAIID) BIINOU «...:iusussumss s viusssissnsinsnsuissusssmssssmiusssisssusns 257
Code Fragment 1 of the Training Methodccccceeceenercrcrsccsceereseenreenensesesesnsesnsassensasne 262
Code Fragment 2 of the Training MBMOY. ... ssmisssissisinsisnsssusssvasiiimsiss 263
Training Results for the Micro-Batch Methodccccoovveermenieneiresrersssr e sesceresssssseseesessens 269
TOEE PIOCEBSIOT LIRS i uoioiuissaasiianssuaosions s s saos 5553 suassssssuss ddsansss s b idsaasssmmisovssessuuspungs 275
Testing Resulis Tor the Micro=Batth MeDd........swmussmsmmmmsmmsssis s sassvssssnn imsmassssmsssnen 279
DigUing DOEPET «:icnnmniinnsnin e AR R 281
L UV ITINL s i R A AR AT B N S S YA IRA N TR F CAa S 288

Chapter 9: Approximating Continuous Functions with Complex Topology 289
Example 5a: Approximation of a Continuous Function with Complex Topology

Using the Convertional NETWORK PYOGESS w.u:uuussssusssssmssisissusiissssissssisssisssiiosssssssssssohisssisons 289
Network Architecture for EXample 5a..........ccccoimnnnnnnnnnnncsnnisnincnesssssnsssssssesssssssssssas 292
Prograny Codle Tor EXample B8....oimammmmmmumnsimmsiiosmemmsissiammmidis 293
Tralning Processing Resulls Tor EXAmpPIR B8ouomiassussavimiomsmiisimssisissuscomisss 307

viii

Dv Prof Engr Mr Sanlosh Kumar

TABLE OF CONTENTS

Approximation of a Continuous Function with Complex Topology

R [(i i L e 1 T — 310
Testing Processing for EXamPpIe 5@ccveeceorcenecrcrecrene s snemsssnese s eneesenens 314
Example 5b: Approximation of Spiral-Like FUNCHONScccccvvermenisieriesesesessssessssessssssenses 340
Netwark:Architecture for Bample 5b....cosuamunnmmiosmaesmsssmmmmes 344
Programy Cods for EXAMDIE 8. amsicaisismsiimssmsssssmsnsimnssiisssivssiissamsssssasinio 345
Approximation of the Same Function Using the Micro-Batch Method..........ccoovniccnrininennnns 362
ST S N NS U ——— 392
Chapter 10: Using Neural Networks to Classify ObJects......c.cccuumsensssnnssssansssansssnns 393
Example 6: ClassSHICAUON OF RBEOIUSvuuwsmonsusvussossssnimimssiomimmyioii i s amiss s 393
Training DAt SEL........cciicciiiiiriiie s e e 395
I T T VRIGE NII0 oo o S A A S A MR AR S 399
[0 W e RO LD R0 SN SONCL SR WL ST OVUURUON ORI IIOE. JINEL SRR 399
Frogeam Gode 1or Dats NomalZaloN ..ommmimeimmsiaimmsssissis i 401
Program Code for ClasSifiCationccoeeeeiiirmieesiiieeieiscsssaessessesessessesnessssnssssasenssassnssssaes 407
TR RN PRI i st oo G A e ke 436
RSN RN ..o oo s e b s S s A e 446
L 447
Chapter 11: The Importance of Selecting the Correct Model..........c.ccueensunrsanssnnans 449
Example 7: Predicting Next Month’s Stock Market PriCe........cccuvevmmnmrnmsnmmnsnsmmissmnsssnesesenens 449
Including Function Topology in the Data Set..........cccevrrnenrnnniecrr e 457
BRI TGO BIRECIY TUUBB - s il 5w s 459
LT 1) o 465
P TERCTRIIN IOIONES s sionisnsvmonss imsn i N R R A A A A OB s 466
R NI E IR i i oo B e e e R ek 500
s L) 1 (| — 502
ORI LIRTE SBE oo coenosmmnssm i oo o o e A B A0 509
Testing EODK :cvisimnsinmmmnaimrmmmirs ki 514
TBBRIENEY FUBBRIIS o i soswosnsionomemsoms it ok s iR A B AR B RG B5 524
ix

Dy Profl Engr Mr Santosh Kumar

TABLE OF CONTENTS

ANEIVZING thet TESHNG RESUINE .ccicomiussinisscnsssinmsossissanasiss s sesirss s emiassene 527

BTN VBT oo s o055 08 A S SRS 529

Chapter 12: Approximation of Functions in 3D Space........cccuurmmmemssssssssssssssssnnens 531

Example 8: Approximation of FUNCHONS in 3D SPACE.......cccverermerereresessserssessrsrsesssesesssnsseenens 532

DR PO M MY oo s’ oA 532

NEtWOrK ArCHITECLUIE..........cerreeererrererser e e sns s e s rassenssrs e sas e s e s sns e ene e s snennsnnrasen 537

P IR TN OIS A i 538

E O T L T I b B e T s 553

1) | T rm—— 561

D ID MM e 8 R A A R A D MR B A A 563
X

Dy Profl Engr Mr Santosh Kumar

CHAPTER 1

Learning About Neural
Networks

The artificial intelligence neural network architecture schematically mimics a human
brain network. It consists of layers of neurons directionally connected to each other.
Figure 1-1 shows a schematic image of a human neuron.

Axon from Another
Cell

R

Dendrite

Synapces

Cell Body

Figure 1-1. Schematic image of a human neuron

© Igor Livshin 2019
L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_1

Dy Profl Engr Mr Santosh Kumar

CHAPTER 1 LEARNING ABOUT NEURAL NETWORKS

Biological and Artificial Neurons

A biological neuron (on a simplified level) consists of a cell body with a nucleus, axon,
and synapses. Synapses receive impulses, which are processed by the cell body. The

cell body sends a response over an axon to its synapses, which are connected to other
neurons. Mimicking the biological neuron, an artificial neuron consists of a neuron body
and connections to other neurons (see Figure 1-2).

Neuron body

Iy -Input 1

Neuron
output

Network
input to
neuron

z

by Aput 2 W, Neuron

I3 -Input 3

Figure 1-2. Single artificial neuron

Each input to a neuron is assigned a weight, W. The weight assigned to a neuron
indicates the impact this input makes in the calculation of the network output. If the
weight assigned to neuronl (W,) is greater than the weight assigned to neuron2 (W,),
then the impact of the input from neuron1 on the network output is more significant
than from neuron2.

The body of a neuron is depicted as a circle divided into two parts by a vertical
line. The left part is called the network input to the neuron, and it shows the part
of the calculation that the neuron body performs. This part is typically marked
on network diagrams as Z. For example, the value of Z for the neuron shown
in Figure 1-2 is calculated as a sum of each input to the neuron multiplied by
the corresponding weight and finally adding the bias. That is the linear part of
calculation (Equation 1-1).

Z=W/'L,+W,’ L, +W,'I, +B, (1-1)

Dy Profl Engr Mr Santosh Kumar

CHAPTER 1 LEARNING ABOUT NEURAL NETWORKS

Activation Functions

To calculate output O from the same neuron (Figure 1-2), you can apply a special
nonlinear function (called the activation function, c) to the linear part of calculation Z
(Equation 1-2).

O=0(2) (1-2)

There are many activation functions that are used for networks. Their usage depends
on various factors, such as the interval where they are well-behaved (not saturated), how
fast the function changes when its argument changes, and simply your preferences. Let’s
look at the one of the most frequently used activation functions; it’s called sigmoid. The
function has the formula shown in Equation 1-3.

1
olZ)= 1-3
(2)-— 13
Figure 1-3 shows the graph of a sigmoid activation function.
2
//
10 r 3 4 2 0 2 p 3 : 10

Figure 1-3. Graph of a sigmoid function

As shown on the graph in Figure 1-3, the sigmoid function (sometimes also called
the logistic function) best behaves on the interval [-1, 1]. Outside of this interval, it
quickly saturates, meaning that its value practically does not change with the change of
its argument. That is why (as you will see in all this book’s examples) the network’s input
data is typically normalized on the interval [-1, 1].

Some activation functions are well-behaved on the interval [0, 1], so the input data
is correspondingly normalized on the interval [0, 1]. Figure 1-4 lists the most frequently
used activation functions. It includes the function name, plot, equation, and derivative.
This information will be useful when you start calculating various parts within a network.

3

Dy Profl Engr Mr Santosh Kumar

CHAPTER 1 LEARNING ABOUT NEURAL NETWORKS

- - Sontion —
e / f@)=2 r@=1

| [nz>={‘: o 250 ra={3 & i

g e _/': f@)=7 “_, Ar(z) = f(@)(1- f(2)

Tt | fa) = tanh(a) = e - f@)=1-f2)?

waw | T f@) =) 1) = 7y

e R B - ra={1 o 759
ey _faz for <0 , r z<0
e / r@={ % o 230 ra={$ o 250
e N T I T G
T o=

Figure 1-4. Activation functions

Using a specific activation function depends on the function being approximated
and on many other conditions. Many recent publications suggest using tanh as the
activation function for hidden layers, using the linear activation function for regression,
and using the softmax function for classification. Again, these are just general
recommendations. I recommend you experiment with various activation functions for
your project and select those that produce the best result.

For this book’s examples, | found experimentally that the tanh activation function
works best. It is also well-behaved (as the sigmoid activation function) on the interval
[-1,1], but its rate of change on this interval is faster than for the sigmoid function. It also
saturates slower. I use tanh in almost all the examples of this book.

Dy Profl Engr Mr Santosh Kumar

CHAPTER 1 LEARNING ABOUT NEURAL NETWORKS

Summary

The chapter introduced you to the form of artificial intelligence called neural networks.

It explained all the important concepts of neural networks such as layers, neurons,
connections, weights, and activation functions. The chapter also explained the
conventions used for drawing a neural network diagram. The following chapter shows all
the details of neuron network processing by explaining how to manually calculate all the
network results. For simplicity, two terms—neural network and network—will be used
interchangeably for the rest of this book.

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2

Internal Mechanics
of Neural Network
Processing

This chapter discusses the inner workings of neural network processing. It shows how a
network is built, trained, and tested.

Function to Be Approximated

Let’s consider the function y(x) = x?, as shown in Figure 2-1; however, we’ll pretend that
the function formula is not known and that the function was given to us by its values at
four points.

© Igor Livshin 2019
L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_2

D¥ Piold Ellr:;r f Saniosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

-4 2 0 2 4

Figure 2-1. Graph of the function

Table 2-1 lists the function values at the four points.

Table 2-1. Function Values Given at Four Points

X f(x)
1 1

3 9

5 25
7 49

In this chapter, you will build and train a network that can be used for predicting the
values of the function at some arguments (x) that are not being used for training. To be
able to get the value of the function at nontrained points (but within the training range),
you first need to approximate this function. When the approximation is done, you can
then find the values of the function at any points of interest. That's what the network is
used for, because the network is the universal approximation mechanism.

8

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

Network Architecture

How is a network built? A network is built by including layers of neurons. The first layer on
the left is the input layer, and it contains the neurons that receive input from the outside.
The last layer on the right is the output layer, and it contains the neurons that carry the
output of the network. One or more hidden layers are located between the input and
output layers. Hidden-layer neurons are used for performing most of the calculations
during the approximation of the function. Figure 2-2 shows the network diagram.

Input Layer Hidden Layer 1 Output Layer

1
Network

Induj yJomjaN

Biases for the Hidden
and Output Layers

By B, ¢

Figure 2-2. Neural network architecture

Connections are drawn from the neurons in the previous layer to the neurons of the
next layer. Each neuron in the previous layer is connected to all the neurons of the next
layer. Each connection carries a weight, and each weight is numbered with two indexes.
The first index is the receiving neuron number, and the second index is the sending
neuron number. For example, the connection between the second neuron in the hidden
layer (H,) and the only neuron in the input layer (I,) is assigned the weight W,,. The
superscript 1 indicates the layer number of the sending neuron. Each layer is assigned

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

a bias, which is similar to the weight assigned to a neuron but applied to a layer level.
Biases make the linear part of each neuron output calculation more flexible in matching
the approximated function topology.

When the network processing starts, the initial values for weights and biases are
usually randomly set. Typically, to determine the number of neurons in a hidden layer,
you double the number of neurons in the input layer and add the number of neurons in
the output layer. In our case, it is (1*2+1 = 3), or three neurons. The number of hidden
layers to be used in the network depends on the complexity of the function to be
approximated. Typically, one hidden layer is sufficient for a smooth continuous function,
and more hidden layers are needed for more complex function topology. In practice, the
number of layers and neurons in the hidden layers that leads to the best approximation
results is determined experimentally.

The network processing consists of two passes: a forward pass and a backward
pass. In the forward pass, the calculation moves from left to right. For each neuron, the
network gets the input to the neuron and calculates the output from the neuron.

Forward-Pass Calculation

The following calculations give the output from neurons H1, H2, and H3:

Neuron H,
Z:=W,’I,+B'1
H, =0'(Zi)
Neuron H,
Z, =W5;"L.4+B,"1
H,=0(Z;)
Neuron H;

Z;. :W’:l*ll +B1*1
H, =0'(Z§)

10

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

These values are used when processing neurons in the next layer (in this case, the
output layer):

Neuron O,

Z: =W 'H,+W>'H, +W3'H, +B,"1
0, = G(Zf)

The calculation made in the first pass gives the output of the network (called the
network predicted value). When training a network, you use the known output for the
training points called the actual or target values. By knowing the output value that the
network should produce for the given input, you can calculate the network error, which
is the difference between the target value and the network calculated error (predicted
value). For the function you want to approximate on this example, the actual (target)
values are shown in Table 2-2, column 2.

Table 2-2. Input Data Set for the Example

X f(x)
1 1

3 9

5 25
7 49

A calculation is done for each record in the input data set. For example, processing
the first record of the input data set is done by using the following formulas.

Input Record 1

Here are the formulas for the first input record:

Neuron H,

Z' =W!'I, +B,"1.00 = W'"1.00 + B,"1.00
H, =G(Z:)

11

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

Neuron H,
Z,=W, 'l +B,"1.00=W,,'1.00+B,'1.00
H,=0(Z})

Neuron H,
Z,=W,'l, +B,"1.00=W,,"1.00+B,1.00
H, =tr(Z})

Neuron O,

Z: =W 'H,+W>"H,+ W/ 'H, +B,"1.00
0,=0 (Zf)
Here is the error for record 1:

K, = 0'(Z,2)- Target value for Record 1= G(Zf) -1.00

Input Record 2

Here are the formulas for the second input record:

Neuron H,

Z,=W, '], +B,"1.00=W,,"3.00+B,"1.00
H, =0'(Z})

Neuron H,

Z,=W,'1,+B,"1.00=W,,"3.00+B,"1.00
H, =0'(Z;)

12

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

Neuron H;,
Z,=W,'] +B,"1.00=W,,"3.00+B,"1.00
H,=0(Z})

Neuron O,
Z:=W.H,+ W H, + W3 H, +B,"1.00
0, =0 (Zl2)

Here is the error for record 2:

E =0 (Z:)— Target value for Record 2=0c (Z,2)— 9.00

Input Record 3
Here are the formulas for the third input record:
Neuron H,
Z,=W,'I, +B,"1.00=W,,"5.00+ B,"1.00
H =o (Z:)
Neuron H,
Z, =W,'], +B,"1.00=W,,"5.00+B,"1.00
H, = O'(Z;)
Neuron H,

Zy=W, '], +B,"1.00=W,,"5.00+B,"1.00
Hy=e(Z)

Dy Profl Engr Mr Santosh Kumar

13

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING
Neuron O,

72 =WZ2'H, + W2 H, + W2'H, +B,"1.00
0, =0'(Z'f)

Here is the error for record 3:

E =0 (Zf) —Target value for Record 3=0 (Zf) —25.00

Input Record 4

Here are the formulas for the fourth input record:

Neuron H,
Z,=W,'T,+B,"1.00=W,,"7.00+B,"1.00
H, =o(Z;)

Neuron H,
Z, =W,,’], +B,"1.00 =W,,"7.00+B,"1.00
H, =G(Z§)

Neuron H;
Z,=W, 'l +B,"1.00 =W,,"7.00 +B,"1.00
B <ior{2)

Neuron O,

72 =W2"H, + W} "H, + W3 H, +B,"1.00
0,=0(Z})

Here is the error for input record 4:

E =0 (Zf) —Target value for Record 4=c (Zf) -49.00

14

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

When all records have been processed for this batch (and the batch here is the
entire training set), that point in the processing is called the epoch. At that point, you can
take the average of the network errors for all records—as in E =(E1 + E2 + E3 + E4)/4—
and that is the error at the current epoch. The average error includes each error sign.
Obviously, the error at the first epoch (with randomly selected weights/biases) will be
too large for a good function approximation; therefore, you need to reduce this error
to the acceptable (desired) value called the error limit, which you set at the beginning
of processing. Reducing the network error is done in the backward pass (also called
backpropagation). The error limit is determined experimentally. The error limit is set to
the minimum error that the network can reach, but not easily. The network should work
hard to reach such an error limit. The error limit is explained in more detail in many
code examples throughout this book.

Backpropagation-Pass Calculations

How can the network error be reduced? Obviously, the initial weight and bias values
are randomly set, and they are not good. They lead to a significant error for epoch 1.
You need to adjust them in a way that their new values will lead to a smaller network-
calculated error. Backpropagation does this by redistributing the error between all
network neurons in the output and hidden layers and by adjusting their initial weight
values. Adjustment is also done for each layer bias.

To adjust the weight of each neuron, you calculate the partial derivative of the
error function with respect to the neuron’s output. For example, the calculated partial

derivative for neuron O, is — . Because the partial derivative points to the direction of

1
the increased function value (but you need to decrease the value of the error function),

so the weight adjustment should be done in the opposite direction.

Adjusted value of weight = original value of weight —m’ g—g

1

Here 1 is the learning rate for the network, and it controls how fast the network
learns. Its value is typically set to be between 0.1 and 1.0.

15

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

A similar calculation is done for the bias of each layer. For bias B, if the calculated

partial derivative is 6_E’ then the adjusted bias is calculated as follows:
1

Adjusted value of bias B, =Original value of bias B, —n" %

1

By repeating this calculation for each network neuron and each layer bias, you
obtain a new set of adjusted weight/bias values. Having a new set of weight/bias values,
you return to the forward pass and calculate the new network output using the adjusted
weights/biases. You also recalculate the network output error.

Because you adjusted the weights/biases in the direction opposite to the gradient
(partial derivatives), the new network-calculated error should decrease. You repeat both
the forward and backward passes in a loop until the error becomes less than the error
limit. At that point, the network is trained, and you save the trained network on disk. The
trained network includes all weight and bias parameters that approximate the predicted
function value with the needed degree of precision. In the next chapter, you will learn how
to manually process some examples and see all the detailed calculations. However, before
doing that, you need to refresh your knowledge of the function derivative and gradient.

Function Derivative and Function Divergent

A derivative of a function is defined as follows:

where:
ox is a small change in a function argument.
f(x) is the value of a function before changing the argument.
f(x + 0x) is the value of a function after changing the argument.

The function derivative shows the rate of change of a single-variable function f(x)
at point x. The gradient is the derivative (rate of change) of a multivariable function
f(x,y, z) at the point (x, y, z). The gradient of a multivariable function f(x, y, z) is a

product of components calculated for each direction (Zi, %, gi). Each component
X Z

16

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

is called the partial derivative of function f(x, y, z) with respect to the specific variable
(direction) x, y, z.

The gradient at any function point always points to the direction of the greatest
increase of a function. At the local maximum or local minimum, the gradient is zero
because there is no single direction of increase at such locations. When you are
searching for a function minimum (for example, for an error function) that you want to
minimize, you move in the direction opposite to the gradient.

There are several rules for calculating derivatives.

This is the power rule: i(u“) =a*xu*" ou
ox 0x

a *
This is the product rule: (u U) » OV +v* ou

— _— vV —

ox ox ox

ou L.ov

V' ——-u —

This is the quotient rule: of (E) __Ox ox
ox\ v v?

The chain rule tells you how to differentiate a composite function.

It states that % = % a—u, where u = f(x).

ox Ju ox

Here's an example: y = u®. u=x*+5.

According to the chain rule,

oy Gy ou

8u’ 2x =16x‘(x2 +5)7
0X oOu ox

Most Commonly Used Function Derivatives

Figure 2-3 lists the most commonly used function derivatives.

17

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

é—i—(a)=0

%(x)==
%(M)Mg
—‘-i—(:c-f-v-w):d“ a
dx dx dx
i(uv)-uﬂ-i-vd—“
dx dx dx
1(£)=1ﬂ_ig'z
dx\v) vdx v dx
j‘x_(un)_ nun-l_z::_

d 1 du
E(«/u)-mzt‘
e
dx\u u® dx
i'_'.)=-_£'_._‘!‘.‘
dx\“n u‘"ldt

d ; du
. [f(u)]= d—‘[f (“)]‘—t;

—(‘E‘-[Inu]= %[log,u]= %3—:
%[logau] = Iog“c‘-l‘ Zx—u
4 o _ el
dx dx
i ia" =a"lnaﬂ
dx dx dx

d v v—l d“ v dV
—(u)=vu — i W’ =
dx dx dx

—d—sinu—cosuﬂi
dx dx

d . du
——COSU = =SINU —
dx dx

"
—lanu = sec”

A
dx

dx

ij—cotu-- csczud—"
dx

dx

isecu--scculanuﬂ
dx dx

icscu--cscucomi'£
dx dx

Figure 2-3. Commonly used derivatives

18

Dy Profl Engr Mr Santosh Kumar

CHAPTER 2 INTERNAL MECHANICS OF NEURAL NETWORK PROCESSING

It is also helpful to know the derivative of the sigmoid activation function because it
is frequently used in the backpropagation step of network processing.

o(Z)=1/(1 + exp (-2))

06(Z
_(__) =7" (1 L Z)
oz
The derivative of the sigmoid activation function gives the rate of change of the

activation function at any neuron.

Summary

This chapter explored the inner machinery of neural network processing by
explaining how all processing results are calculated. It introduced you to derivatives
and gradients and described how these concepts are used in finding one of the error
function minimums. The next chapter shows a simple example where each result

is manually calculated. Simply describing the rules of calculation is not enough

for understanding the subject because applying the rules to a particular network
architecture is really tricky.

19

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3

Manual Neural Network
Processing

In this chapter, you'll learn about the internals of neural network processing by seeing
a simple example. I'll provide a detailed step-by-step explanation of the calculations
involved in processing the forward and backward propagation passes.

Note All calculations in this chapter are based on the information in Chapter 2.
If you have any issues reading Chapter 3, consult Chapter 2 for an explanation.

Example 1: Manual Approximation of a Function
at a Single Point

Figure 3-1 shows the vector in the 3-D space.

© Igor Livshin 2019
L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_3

Dy Pl Erlr:;r M Saniosh Kurmar

21

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

A V=f(x1,x2)

0.80}------

=3 4

X2

Figure 3-1. Vector in 3-D space

The vector represents the value of the function y=f(x1,x2), where x1 = 0.01 and x2 = 0.02.

y(0.01,0.02)=0.80

Building the Neural Network

For this example, say you want to build and train a network that for a given input
(x1=0.01, x2=0.02) calculates the output result y = 0.80 (the target value for the network).
Figure 3-2 shows the network diagram for the example.

22

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Input Layer Hidden Layer Output Layer

Figure 3-2. Network diagram

The network has three layers of neurons (input, hidden, and output). There are two
neurons (I, and L,) in the input layer, three neurons (H,, H,, H;) in the hidden layer, and
one neuron (0,) in the output layer. The weights are depicted near the arrows that show
the links (connections) between neurons (for example, neurons I, and I, provide the
input for neuron H, with the corresponding weights W,, and W,,).

The bodies of neurons in the hidden and output layers (H,, H,, Hs;, and O,) are shown
as circles divided into two parts (see Figure 3-3). The left part of the neuron body shows
the value of the calculated network input for the neuron (Z} =W/, +W,'L, +B, 1).

The initial values for biases are typically set to 1.00. The neuron’s output is calculated by

applying the sigmoid activation function to the network input into the neuron.

H,=0(2})=1/(1+exp(-2}))

23

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Figure 3-3. Neuron presentation in the hidden and output layers

The error function calculation is shown as a quadrant because it is not a neuron
(Figure 3-4).

—» E

Figure 3-4. Error function representation

B1 and B2 are biases for the corresponding network layers.
Here is a summary of the initial network settings:
e Inputtoneuronl, =0.01.
e Inputto neuron I, = 0.02.
o T, - (The target output from neuron O,) = 0.80
You also need to assign initial values to the weights and biases parameters.

The values of the initial parameters are typically set randomly, but for this example
(where all calculations are done manually) you are assigning them the following values:

W, =0.05 W/, =0.06 W,, =0.07 W,, =0.08 W,, =0.09 W, =0.10
W2 =011 W}, =0.12 W3 =0.13

B, =0.20

B, =0.25

The error limit for this example is set to 0.01.

Forward-Pass Calculation

The forward-pass calculation starts from the hidden layers.

24

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Hidden Layers

For neuron H,, here are the steps:

1. Calculate the total net input for neuron H, (Equation 3-1).

Z'=W!'T,+WL'T, +B,'1.00 =0.05"0.01+0.06"0.02
+0.201.00 = 0.2017000000000000.

2. Use the logistic function to get the output of H, (Equation 3-2).

H, =5(z})=1/(1+exp(—z}))=1/(1 +exp(—0.2017000000000000))
=0.5502547397403884

See Equation 3-3 for neuron H.,.

Z, =W, I, +W,,’I, +B,"1.00=0.07"0.01+0.08"0.02+0.20"1.00 = 0.2023
H2=1/(1+exp(-0.2023))=0.5504032199355139

See Equation 3-4 for neuron Hs.

7! =W! 'L, + WL T, +B,'1.00=0.09"0.01+0.10°0.02+0.20"1.00
=0.20290000000000002
H3=1/(1+exp(~0.20290000000000002)) =0.5505516911502556

Output Layer

The output layer’s neuron O, calculation is similar to the hidden-layer neurons

(3-1)

(3-2)

(3-3)

(3-4)

calculation but with one difference: the input for output neuron O, is the output from

the corresponding hidden-layer neurons. Also, notice that there are three hidden-layer

neurons contributing to the output layer’s neuron O,.

Dy Profl Engr Mr Santosh Kumar

28

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Here are the steps for neuron O;:

1. Calculate the total net input for neuron O (Equation 3-5).

Z:=W/.H,+ W, H, + W3 H, +B,"1.00=0.11"0.5502547397403884
+0.12°0.5504032199355139 +0.13"0.5505516911502556 + 0.25°1.00 (3-5)
=0.44814812761323763

2. Use the logistic function o to get the output from O, (Equation 3-6).

0, =o(zf)=1/(1+exp(—zf))=1/ (1+exp(—0.44814812761323763))
=0.6101988445912522

(3-6)

The calculated output from neuron O, is 0.6101988445912522, while the target
output from neuron O, must be = 0.80; therefore, the squared error for the output for
neuron O, is as shown in Equation 3-7.

E=0.5"(T, -0,)2 =0.5"(0.80-0.6101988445912522)=0.01801223929724783 (3-7)

In this formula, the 0.5 multiplier is used to cancel out the exponent during the
derivative calculation. For efficiency reasons, the Encog framework (which you will learn
and use later in this book) moves the squaring to later in the calculation.

What is needed here is to minimize the network-calculated error to obtain the good
approximation results. This is done by redistributing the network error between the
output- and hidden-layer neurons’ weights and biases, while taking into consideration
that the impact of each neuron on the network output depends on its weight. This
calculation is done in the backward-propagation pass.

To redistribute the error toward all the output- and hidden-layer neurons and adjust
their weights, you need to understand how much the final error value changes when
a weight for each neuron changes. The same is true for the biases for each layer. By
redistributing the network error to all output- and hidden-layer neurons, you actually
calculate adjustments for each neuron weight and each layer bias.

26

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Backward-Pass Calculation

Calculating weight and bias adjustments for each network neuron/layer is done by
moving backward (from the network error to the output layer and then from the output
layer to the hidden layers).

Calculating Weight Adjustments for the Output Layer
Neurons

Let’s calculate the weight adjustment for the neuron W, . As you already know, the
partial derivative of a function determines the impact of a small change in the error
function argument on the corresponding change of the function value. Applying it to

the neuron W7, here you want to know how a change in W’ affects the network error E.
To do this, you need to calculate the partial derivative of the error function E with respect

to W?, which is

5
11

Calculating Adjustment for lel

Applying the chain rule for derivatives, 0 / oW, can be expressed by Equation 3-8.

OE _ OE’00," 9Z;
oW} 80, 07} ow?

(3-8)

Let’s calculate separately each part of the equation using the derivative calculus
(Equation 3-9).

E=0.5'(T,-0,)’
.0(0.5(T1-01
a—E=2*O.5*(Tl _Ol) (())
00, 00,

=0.80-0.6101988445912522 = —0.18980115540874787

=(TI—OI)'(—1)=(OI_T1) (3°9)

> is the derivative of the sigmoid activation function and is equal to Equation 3-10.

1

0, (1-0,)=0.6101988445912522"(1-0.6101988445912522)
=0.23785621465075305 (3-10)

27

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

2
1
2 *
11

See Equation 3-11 and Equation 3-12 to calculate

Z: =W/ H,+ W} H, + W3 H, +B, 1.00 (3-11)
oz}

- =H, =0.5502547397403884 (3-12)
oWy,

o(Wy H,+W;3" H, +B,"1.00)
oWy,

Note

=0, because this part does not depend on W .

Let’s put it all together (Equation 3-13).

6E2 =—0.18980115540874787" 0.23785621465075305"
Wi (3-13)

0.5502547397403884 =—0.024841461722517316

To decrease the error, you need to calculate the new adjusted value for W}, by

subtracting the value of (optionally multiplied by some learning rate n) from the

2
11

original value of W, (Equation 3-14).

*

adjustedW =W/, —n For this example,n=1.

W (3-14)
adjustedW,, =0.11+0.024841461722517316 =0.13484146172251732

Calculating the Adjustment for w2

Applying the chain rule for derivatives, 6E/6W,, can be expressed by Equation 3-15.

OE _ QE"00," oz;
oW? 00, 0z} oW

(3-15)

28

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Let’s calculate separately each part of the equation using derivative calculus
(Equation 3-16).

a%E =-0.18980115540874787 (see 1.13) (3-16)

1

A 00
See Equation 3-17 and Equation 3-18 to calculate —_-.
1

o0, =0.23785621465075305 (see 1.14) (3-17)

2
1

2
1
5 -
12

See Equation 3-18 and Equation 3-19 to calculate

Z?=WJ'H,+ W} H, + W3"H, +B,"1.00 (3-18)
0Z;

~=H, =0.5504032199355139 (see 1.3) (3-19)
oWy,

Let’s put it all together (Equation 3-20).

6E2 =-0.18980115540874787"0.23785621465075305"
aVV“ (3'20)

0.5502547397403884 =—0.024841461722517316

To decrease the error, you need to calculate the new adjusted value for W by

subtracting the value of

> (optionally multiplied by some learning rate n) from the

11

original value of W7, (Equation 3-21).

OE
oW’ (3-21)
adjustede2 =0.12+0.024841461722517316=0.1448414617225173.

adjustedW, =W}, —n’

29

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Calculating the Adjustment for w2,

Applying the chain rule for derivatives, 6E / oW, can be expressed by Equation 3-22 and

Equation 3-23.

0E OE 00, dZ}
OW?: 00, 0z} oW.

% =-0.18980115540874787 (see 1.13)

1

80,

~rz2
1

=0.23785621465075305 (see 1.14)

2
1
2 "
13

See Equation 3-24 and Equation 3-25 to calculate

72 =W>"H, + W% H, + W2'H, +B,"1.00

2
azlz =H, =0.5505516911502556 (see 1.4)
oW,

Let’s put it all together (Equation 3-26 and Equation 3-27).

OE
oW,
0.5505516911502556 =—0.024854867708052567

=-0.18980115540874787"0.23785621465075305"

adjustedW;, =W? -1’ E}a% For this example, n=1.

13

adjustedW;, =0.13+0.024841461722517316 =0.1548414617225173

30

Dy Profl Engr Mr Santosh Kumar

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Therefore, on the second iteration, you will use the following weight-adjusted values:
adjustedW;, =0.08515853827748268
adjustedW;, =0.09515853827748268
adjustedW;, =0.10515853827748269

After adjusting weights for the output neurons, you are ready to calculate weight
adjustments for the hidden neurons.

Calculating Weight Adjustments for
Hidden-Layer Neurons

Calculating weight adjustments for the neurons in the hidden layer is similar to the
corresponding calculations in the output layer but with one important difference.

For the neurons in the output layer, the input is now made up of the output results from
the corresponding neurons in the hidden layer.

Calculating the Adjustment for W},

Applying the chain rule for derivatives, 0E/0W,, can be expressed by Equations 3-28,
3-29, 3-30, and 3-31.

O0E _ OE0H," 0Z,

= 3-28
oW, OH, 0Z oW, ()

8k 8 O\ __.18980115540874787" 0.23785621465075305
0H, 00, 0z (3-29)

=-0.04514538436186407 (seel.l3and1.14)

31

Dv Prof Engr Mr Sanlosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

OH "

871:=O'(H1)=H1 (1-H,)
=0.5502547397403884" (1—0.5502547397403884) (3-30)
=0.24747446113362584

7! (WL +W,, L +B"1
0 . (WL, ot)=11=0.01. (3-31)
ow;, oWy,

Let’s put it all together (Equations 3-32, 3-33, and 3-34).

3
GE, =-0.04514538436186407"0.24747446113362584"0.01
Wi (3-32)
=-0.0001117232966762273
. 1 1 * aE
adjustedW,, =W}, -’ ——=0.05-0.0001117232966762273
a‘/vu (3'33)
=0.049888276703323776

.
adjustedW), =W,, -1’ ob —=0.05+0.0001117232966762273
oW (3-34)

=0.05011172329667623.

Calculating the Adjustment for wh

Applying the chain rule for derivatives, E/6W,, can be expressed by Equations 3-35,
3-36, and 3-37).

0E _OE 0H, 0Z,
OW,, OH, 0Z; OW,

G ao; =-0.18980115540874787 0.23785621465075305
oH, 00, oz, (3-35)

=-0.04514538436186407 (see 1.13and 1.14).

ilzil‘=0.24747446113362584 (see1.28) (3-36)
o 1

32

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

7! (W' ' I +WL'I,+B"1
ke L~ (War'h e)=12=0.02 (3-37)
avle anZ

Let’s put it all together (Equations 3-38 and 3-39).

aEl =-0.04514538436186407"0.24747446113362584" 0.02
oW (3-38)
=-00022344659335245464
. 1 1 . OE
adjustedW,, = W}, -’ ——— =0.06 + 0.00022344659335245464
oW (3-39)
=0.06022344659335245

Calculating the Adjustment for wl

Applying the chain rule for derivatives, 0E/0W,, can be expressed by Equations 3-40,
3-41, 3-42, and 3-43.

0E _ OF "0H," 87}

1 1 1 (3‘40)
ow,, oOH, o0Z, oW,

OE = OE ao: =-0.18980115540874787"0.23785621465075305
oH, 80, 0Z, (3-41)

=—0.04514538436186407 (see 3.9and 3.10).

oH 2=H, (1-H,)=0.5504032199355139"(1-0.5504032199355139)
oz, (3-42)
=0.059776553406647545
1 (WML +W.L'I,+B1
aZZI _ (21 4 2T z T)=Il —0.01 (3-43)
am/Zl aVVZI
33

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Let’s put it all together (Equations 3-44 and 3-45).

A@El =-0.04514538436186407"0.059776553406647545°0.01
W, (3-44)

=-0.000026986354793705983
. 1 1 « OF
adjustedW,, = W}, -1’ ——— =0.07+0.000026986354793705983
ow,, (3-45)
=0.07002698635479371

Calculating the Adjustment for W},

Applying the chain rule for derivatives, 0E / dW,, can be expressed by Equations 3-46,
3-47, 3-48, and 3-49.

oE _ OF "oH," 07

= (3-46)
oW,, ©H, oZ, oW,

‘} *

Gk _ 98 50; =-0.04514538436186407 (see3.9and 3.10). (3-47)

oH, 00, 7.
6H, . . <

2 =H,"(1-H,)=0.5504032199355139" (1-0.5504032199355139)
0Z, (3-48)

=0.059776553406647545

L (WAL +WL' L +B 1
oz, _ (zn h 23 L3708):I2 —0.02 (3-49)

OW,, oW,
Let’s put it all together (Equations 3-50 and 3-51).

aEl =-0.04514538436186407"0.059776553406647545"0.02
Ww,, (3-50)

=-0.000053972709587411966

"
adjustedW,, = W), -’ °—El =0.08+0.000053972709587411966
oW, (3-51)

=0.08005397270958742

34

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Calculating the Adjustment for wl

Applying the chain rule for derivatives, dE/6W,, can be expressed by Equations 3-52,

3-53, 3-54, and 3-55.

OFE _ OE 'oH," 0Z:
oW, OH, 0Z; OWj

OE__ E 40,
0H, 00, oZ!

=-0.04514538436186407 (seel.13and1.14).

OH,
oz,

=0.24744452652184917

oz! O(W,'L+W_.'I,+B1
31 _ (31 71 3;2 2 1)211=0-01
oW, ow,,

Let’s put it all together (Equations 3-56 and 3-57).

oE

1
22

=-0.0001117097825806835

=-0.04514538436186407"0.247444526521849170.01

adjustedW., =W, —n’ 8‘35 =0.09+0.0001117097825806835

"
31

=0.09011170978258068

Dy Profl Engr Mr Santosh Kumar

=H,"(1-H,)=0.5505516911502556"(1—0.5505516911502556)

(3-52)

(3-53)

(3-54)

(3-55)

(3-56)

(3-57)

35

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Calculating the Adjustment for wl

Applying the chain rule for derivatives, 6E/6W,, can be expressed by Equations 3-58,
3-59, 3-60, and 3-61.

0E _ ©E "0H, 0Z,
oW,, OH, 0Z, oW,

0E _ OF "0,
6H, 00, o7

=-0.04514538436186407 (see1.49).

OH.

~rzl
0Z,

=0.24744452652184917 (see 1.50)

oZ! 6(!/\/3',‘11 +WI, +B,"1)
- : =1, =0.02
oWy, oW;,

Let’s put it all together (Equations 3-62 and 3-63).

COE

1
32

=-0.000223419565161367

=-0.04514538436186407" 0.24744452652184917"0.02

adjustedW,, = W, —n° aamf =0.10 +0.000223419565161367

T
31

=0.10022341956516137

Updating Network Biases

You need to calculate the error adjustment for the biases B, and B,. Again, using the

chain rule, see Equations 3-64 and 3-65.

36

Dy Profl Engr Mr Santosh Kumar

> =H,"(1-H,)=0.5505516911502556"(1-0.5505516911502556)

(3-58)

(3-59)

(3-60)

(3-61)

(3-62)

(3-63)

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

0E _ OE 00, oz!

_ ! (3-64)
0B, 00, 0Z' 0B,

0E _ O ' 00, 07
0B, 00, 0Z* 0B,

(3-65)

Calculate three parts of the previous formula for both expressions (Equations 3-66,
3-67, 3-68, and 3-69).

0Z, a(‘/vlll* L+W,'L+B 1)

L= =1 (3-66)
OB, 0B,
oz; _O(WA Hy + Wiy Hy + Wi Hy + By1) o
0B, 0B,
68 JoF O 4o (3-68)
OB, ©0H, 0Z, :
OB _ OE “oH,", .55
0B, OH, 0Z} ‘

Because you are using biases B1 and B2 per layer and not per neuron, you can
calculate the average & for the layer (Equations 3-70 through 3-76).

8'=6!+6,+6, (3-70)
9E _s (3-71)
OB,
o 8° (3-72)
OB,
gt =20 ao; =-0.18980115540874787" 0.23785621465075305
00, 0Z: (3-73)
=—0.04514538436186407

37

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

51 0E" 90,

L =—— —1=-0.04514538436186407 (3-74)
80, 07,

8 = o8 aoi =-0.04514538436186407 (3-75)
30, 0Z,

85 = 28 a—O; =-0.04514538436186407 (3-76)
20, 07,

Because for bias adjustments you calculate per layer, you can take the average of the
calculated bias adjustments for each neuron (Equation 3-77).

§'= (51‘ +8, +6,)/ 3=-0.04514538436186407
8% =-0.04514538436186407

(3-77)

With the introduction of variable §, you get Equations 3-78 and 3-79.

adjustedB, =B, —n'8, = 0.20+0.04514538436186407 = 0.2451453843618641 (3-78)

adjustedB, =B, -1’5, = 0.25+0.04514538436186407
=0.29514538436186405 (3-79)

Now that you have calculated all the new weight values, you go back to the forward
phase and calculate a new error.

Going Back to the Forward Pass

Recalculate the network output for the hidden and output layers using the new adjusted
weight/biases.

Hidden Layers

For neuron H,, here are the steps:

1. Calculate the total net input for neuron H, (Equation 3-80).

38

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

7! =W.'T, + W4T, +B,"1.00 =0.05011172329667623"0.01
+0.06022344659335245"0.02 + 0.2451453843618641°1.00 (3-80)
= 0.2468509705266979

2. Use the logistic function to get the output of H, (Equation 3-81).

H;=5(Z} =1/ (1 +exp(-Z,)) =1/(1+exp(—0.2468509705266979))

(3-81)
=0.561401266257945
For neuron H,, see Equation 3-82 and Equation 3-83.
Z,=W,,'T,+W,,"I, +B,"1.00=0.07002698635479371°0.01
+0.08005397270958742"0.02 + 0.2451453843618641"1.00 (3-82)
=0.24744673367960376
H2=1/ (1 + exp(—0.24744673367960376)) =0.5615479555799516 (3-83)

For neuron H;, see Equation 3-84.

Z, =W.'T, + WL, 'L, +B,'1.00 =0.090111709782580680.01
+0.10022341956516137°0.02+0.2451453843618641°1.00
—0.24805096985099312 (3-84)
H3=1/(1+exp(-0.24805096985099312)) = 0.5616967201480348

Output Layer

For neuron O,, here are the steps:
1. Calculate the total net input for neuron O, (Equation 3-85).
Z? =W?2'H, +W}'H, + W/"H, + B,"1.00
=0.13484146172251732'0.5502547397403884
+0.14484146172251730.5504032199355139

+0.1548414617225173°0.5505516911502556
+0.29514538436186405'1.00 = 0.5343119733119508 (3-85)

39

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

2. Use the logistic function o to get the output from O, (Equation 3-86).

0,=0(Z})=1/(1+exp(~Z}))=1/(1+exp(-0.5343119733119508))
=0.6304882485312977

(3-86)

The calculated output from neuron O, is 0.6304882485312977, while the target
output for O, is 0.80; therefore, see Equation 3-87 for the squared error for the output for
neuron O;.

E=0.5"(T,~0,)" =0.5"(0.80 - 0.6304882485312977)’
—0.014367116942993556 (3-87)

On the first iteration, the error was 0.01801223929724783 (see 1.7). Now, on the
second iteration, the error has been reduced to 0.014367116942993556.

You can continue these iterations until the network calculates an error that is smaller
than the error limit that has been set. Let’s look at the formulas for calculating the partial
derivative of the error function E with respectto W, and W/ for the node H1 (see
Equations 3-88, 3-89, and 3-90).

0E _ OE " 00," 07’

=] 3-88
ow? ~ 20, oz oW,)
OE _OE"00," oz} (3-89)
oW: 00, 0Z? oW.

* * 2
6E _8E00," 0Z (3-90)

oW 00, 8Z® oW?

40

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

*

1
00, 8z}
Node Delta 6. Using §, you can rewrite Equations 3-88, 3-89, and 3-90 as Equations 3-91,
3-92, and 3-93.

You can see that all three formulas have a common part:

. This part is called

2
B _ g (3-91)
ow,, W,
OF _ co¢ 07,
W% awp 8
12 12
o 2
OE .5 OZ; (3-93)

Wy oW

Correspondingly, you can rewrite the formulas for the hidden layer (see Equations
3-94 through 3-99).

1

o A (3-94)
oW, oW,
OE O

__ g 04 (3-95)
oW ow;
1

B (3-96)
ow,, ow,,
1

0 _ s O o
WL awl
1

oF 5gmth (3-98)
oW, oW,
1

6B g% (3-99)
av"az aml32

a1

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

In general, calculating the partial derivative of error function E with respect to its
weights can be done by multiplying the node’s delta by the partial derivative of the error
function with respect to the corresponding weight. That saves you from calculating some
redundant data. This means you can calculate & values for each network node and then
use Equations 3.94 through 3.99.

Matrix Form of Network Calculation

Let’s say that there are two records (two points) to be processed by the network.

For the same network, you can put do the calculations using matrices. For example,
by introducing the Z vector, W matrix, and B vector, you can get the same calculation
results as you get when using scalars. See Figure 3-5.

1 1 144 149%
Z11 Wi Wi l4 B1 Wi1*, +W12|2+B1
Z12 - W121 W122 tIB1| T W111*I1 + W112*I2 + B,

Figure 3-5. Matrix form of network calculation

Using matrix versus scalar calculations is a matter of preference. Using a good matrix
library provides a fast calculation. For example, the cuBLAS library can take advantage
of GPUs and FPGA. The downsizing nature of using matrixes causes a high memory
demand since matrixes should be kept in memory.

Digging Deeper

When using a neural network, you set the error limit (specifically indicating how close
the trained network results should match the target data). The training process works
iteratively by gradually moving in the direction toward the error function minimum,
therefore reducing the error. The iterative process stops when the difference between the
calculated network results and the target results is less than the preset error limit.

42

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Could the network fail to reach the error limit that was set? Unfortunately, yes. Let’s
discuss this in more detail. Of course, the approximation error depends on the network
architecture being selected (the number of hidden layers and the number of neurons
within each hidden layer). However, let’s presume that the network architecture is being
set correctly.

The approximation error also depends on the function topology. Again, let’s presume
that the function is monotone and continuous (we will discuss noncontinuous function
approximation later in this book). Still, the network can fail to reach the network limit.
Why? I've already mentioned that backpropagation is an iterative process that looks for
the minimum of error function. Error function is typically a function of many variables,
but for simplicity Figure 3-6 shows it as the 2-D space chart.

| | Min A Global Minimum

Local Minimum B

Error Function

\

B) Randomly Set Initial Value of Weights/Biases

A) Randomly Set Initial Value of Weights/Biases

Weights

Figure 3-6. Error function local and global minimums

43

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

The goal of the training process is to find the minimum of the error function. The
error function depends on the weights/biases parameters being calibrated during
the iterative training process. The initial values of the weights/biases are typically set
randomly, and the training process calculates the network error for this initial setting
(point). Starting from this point, the training process moves down to the function
minimum,

As shown in Figure 3-6, the error function typically has several minimums. The
lowest of them is called the global minimum, while the rest of them are called the local
minimums. Depending on the starting point of the training process, it can find some of
the local minimums that are close to the starting point. Each local minimum works as
a trap for the training process because once the training process reaches a local minim,
any further move would show a changing gradient value, and the iterative process would
stop, being stacked at the local minimum.

Consider starting points A and B in Figure 3-6. In case of starting point A, the training
process will find the local minimum A, which produces a much larger error than in
case B. That’s why running the same training process multiple times always produces
different error results for each run (because for each run, the training process starts at a
random initial point).

Tip How do you to achieve the best approximation results? When programming
neural network processing, always arrange the logic to start the training process
in a loop. After each call of the training method, the logic inside the training
method should check whether the error is less than the error limit, and if it is not,
it should exit from the training method with a nonzero error code. The control will
be returned to the code that calls the training method in a loop. The code calls the
training method again if the return code is not zero. The logic continues the loop
until the calculated error becomes less than the error limit. It will exit at this point
with the zero return code so the training method will no longer be called again.

If this is not done, the training logic will just loop over the epochs, not being able
to clear the error limit. Some examples of such programming code are shown in
later chapters.

44

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Why is it sometimes hard to train the network? The network is considered to
be a universal function approximation tool. However, there is an exception to this
statement. The network can approximate only continuous functions well. If a function
is noncontinuous (making sudden sharp up and down jumps), then the approximation
results for such functions show such low-quality results (large errors) that such
approximation is useless. I will discuss this issue later in this book and show my method
that allows for the approximation of noncontinuous functions with high precision.

The calculation shown here is done for a single function point. When you need
to approximate a function of two or more variables at many points, the volume of
calculation increases exponentially. Such a resource-intensive process puts high
demand on computer resources (memory and CPU). That’s why, as mentioned in the
introduction, earlier attempts to use artificial intelligence were unable to process serious
tasks. Only later, because of dramatically increased computation power, did artificial
intelligence achieve a huge success.

Mini-Batches and Stochastic Gradient

When the input data set is very large (millions of records), the volume of calculations is
extremely high. Processing such networks takes a long time, and the network learning
becomes very slow, because the gradient should be calculated for each input record.

To speed up this process, you can break a large input data set into a number of
chunks called mini-batches and process each mini-batch independently. Processing all
records in a single mini-batch file constitutes an epoch, the point where weight/biases
adjustments are made.

Because of the much smaller size of the mini-batch file, processing all mini-batches
will be faster than processing of the entire data set as a single file. Finally, instead of
calculating the gradient for each record of the entire data set, you calculate here the
stochastic gradient, which is the average of gradients calculated for each mini-batch.

If the weight adjustment processed for the neurons in a mini-batch file mis W,",
then the weight adjustment for such a neuron for the whole data set is approximately
equal to the average of adjustments calculated independently for all mini-batches.

\ 3 m E
adjustedW* ~W* —EZ% , where m is the number of mini-batches
L

$
Neural network processing for large input data sets is mostly done using mini-batches.

45

Dy Profl Engr Mr Santosh Kumar

CHAPTER 3 MANUAL NEURAL NETWORK PROCESSING

Summary

This chapter showed all the internal neural network calculations. It explained why (even
for a single point) the volume of calculations is quite high. The chapter introduced

the & variable, which allows you to reduce the calculation volume. In the “Digging
Deeper” section, it explained how to call the training method to achieve one of the best
approximation results. The mini-batch approach was also explained here. The next
chapter explains how to configure the Windows environment to use Java and the Java
network processing framework.

46

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4

Configuring Your
Development Environment

This book is about neural network processing using Java. Before you can start developing
any neural network program, you need to learn several Java tools. If you are a Java
developer and are familiar with the tools discussed in this chapter, you can skip this
chapter. Just make sure that all the necessary tools are installed on your Windows
machine.

Installing the Java 11 Environment on Your
Windows Machine

All the examples in this book work well with Java versions 8-11. Here are the steps:

1. Gotohttps://docs.oracle.com/en/java/javase/11/install/
installation-jdk-microsoft-windows-platforms.html#GUID-
A740535E-9F97-448C-A141-B95BF1688E6F.

2. Download the latest Java SE Development Kit for Windows.
Double-click the downloaded executable file.

3. Follow the installation instructions, and the Java environment will
be installed on your machine.

4. Onyour desktop, select Start » Control Panel » System and
security » System » Advanced system setting. The screen shown
in Figure 4-1 will appear.

47
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_4

D¥ Piold Erlr:;r e Saniosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

x)
You must be logged on as an Administrator to make most of these changes.

[~ Pedormance

Figure 4-1. System Properties dialog

5. Click the Environment Variables button on the Advanced tab.

6. Click New to see the dialog that allows you to enter a new
environment variable (Figure 4-2).

New System Variable A _X_I

Variable name: ||

Variable value: |

o | cancel

Figure 4-2. New System Variable dialog

48

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

7. Enter JAVA_HOME in the “Variable name” field.

8. Enter the path to the installed Java environment in the

“Variable value” field (Figure 4-3).

System Properties

Computer Name | Hardware Advanced | System Protection | Remote |

x
Variable name: | JAVA_HOME
Variable value: | C:\Program Files\Java\jdk-11.0.1
ok | cancel |
~ System variables
Variable | value |
EAP_HOME C:\)Boss_DevStudioyuntimes\jboss-eap =l
FP_NO_HOST_C... NO
J2EE_HOME C:\Java_EE_SDK_8\glassfishS
JAVA_HOME C:\Program Files\Java\jdk-11.0.1 _'_l
m. - | mt‘ . I mn I
ok | cancel

Figure 4-3. New System Variable dialog, filled in

9. Click OK. Next, select the CLASSPATH environment variable and

click Update.

10. Add the path to the Java JDK bin directory, and add the Java JAR

file to the CLASSPATH’s “Variable value” field (Figure 4-4), as

shown here:

C:\Program Files\Java\jre1.8.0_144\bin
C:\Program Files\Java\jdk1.8.0_144\jre\bin\java.exe

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

Edit System Variable) x|

Variable name: | CLASSPATH

Variable value: | r;C:\Progtam Files\Java\re 1.8.0_144\pin;C
ok | coce |

Figure 4-4. Updated CLASSPATH system variable

11. Click OK three times.

12. Reboot the system. Your Java environment is set.

Installing the NetBeans IDE

NetBeans is the standard Java development tool currently maintained by Oracle. At the
time of writing this book, the current version of NetBeans is 8.2, and it is the official IDE
for the Java 8 platform. To install NetBeans, go to https://netbeans.org/features/
index.html and click Download (Figure 4-5).

Choose page language »

@ Ne‘Beam NetBeans IDE | NetBeans Platform | Enterprise | Plugins | Docs & Support | Community IA‘\

HOME

NetBeans IDE Features g

Figure 4-5. NetBeans home page

On the Download screen, click the Download button for Java SE (Figure 4-6).

50

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

NetBeans IDE Download Bundles
Supported technologies * Java SE Java EE HTMLS/JavaScript PHP C/Ce+ All
@& NetBeans Platform SDK e . °
@& Java SE ° . .
& Java FX ° . .
& Java EE . .
W Java ME .
@& HTMLS/JavaScript . . o .
& PHP . . L]
W C/Ces @ o
& Groovy .
@ Java Card™ 3 Connected °
Bundled servers
& GlassF?sh Server Open ® ®
Source Edition 4.1.1
& Apache Tomcat 8.0.27 “ .
Download x86 Download x86 Downioad x86
) ()| 4 2) oot
(Download x64) (Download x64) (Download x64)

Figure 4-6. NetBeans home page

Double-click the downloaded executable file and follow the installation instructions.
NetBeans 8.2 will be installed on your Windows machine, and its icon will be placed on
your desktop.

Installing the Encog Java Framework

As you can see from some of the examples of manually processing neural networks in
Chapter 3, even a simple approximation of a function at a single point involves a large
volume of calculations. For any serious work, there are two choices: automate this
process yourself or use one of the available frameworks.

Several frameworks are currently available. Here is the list of the most commonly
used frameworks and the language they are written for:

» TensorFlow (Python, C++, and R)

« Caffe (C, C++, Python, and MATLAB)
o Torch (C++, Python)

o Keras (Python)

» Deeplearning4j (Java)

» Encog (Java)

e Neurop (Java)

51

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

Frameworks implemented in Java are much more efficient compared to those
implemented in Python. Here we are interested in a Java framework (for the obvious
reason of developing an application on one machine and being able to run it anywhere).
We are also interested in a fast Java framework and one that is convenient to use. After
examining several Java frameworks, I selected Encog as the best framework for neural
network processing. That is the framework used throughout this book. The Encog
machine learning framework was developed by Heaton Research, and it is free to use.
All Encog documentation can also be found on the web site.

To install Encog, go to the following web page: https://www.heatonresearch.
com/encog. Scroll down to the section called Encog Java Links and click the Encog Java
Download/Release link. On the next screen, select these two files for Encog release 4.3:

encog-core-3.4.jar
encog-java-examples.zip

Unzip the second file. Keep these files in a directory that you will remember, and
add the following files to the CLASSPATH environment variable (like you did for the Java
installation):

c:\encog-core-3.4\1ib\encog-core-3.4.jar

Installing the XChart Package

During data preparation and neural network development/testing, it is useful to be
able to chart many results. You will be using the XChart Java charting library in
this book. To download XChart, go to the following web site: https://knowm.org/
open-source/xchart/.

Click the Download button. The screen shown in Figure 4-7 will appear.

52

Dy Profl Engr Mr Santosh Kumar

CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

XChart

Simple Java Charts

K

Download 3.5.2

Maven Artifacts |

() Get Code at GitHub

Figure 4-7. XChart home page

Unzip the downloaded zip file and double-click the executable installation file.
Follow the installation instructions, and the XChart package will be installed on your
machine. Add the following two files to the CLASSPATH environment variable
(like you did for Java 8 earlier):

c:\Download\XChart\xchart-3.5.0\xchart-3.5.0.jar
c:\Download\XChart\xchart-3.5.0\xchart-demo-3.5.0.jar

Finally, reboot the system. You are ready for neural network development!

Summary

This chapter introduced you to the Java environment and explained how to download
and install a set of tools necessary for building, debugging, testing, and executing
neural network applications. All the development examples in the rest of this book will
be created using this environment. The next chapter shows how to develop a neural
network program using the Java Encog framework.

53

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5

Neural Network
Development Using
the Java Encog
Framework

To facilitate your learning of network program development using Java, you will develop
your first simple program using the function from Example 1 in Chapter 2.

Example 2: Function Approximation Using the
Java Environment

Figure 5-1 shows the function that is given to you with its values at nine points.

55
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_5

D¥ Piold Ellr:;r f Saniosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

A——-

[

Figure 5-1. Function to be approximated

Although Encog can process a set of file formats that belong to the BasicMLDataset
format, the easiest file format that Encog can process is the CSV format. The CSV format
is a simplified Excel file format that includes comma-separated values in each record,
and the files have the extension .csv. Encog expects the first record in the processed files
to be a label record; accordingly, Table 5-1 shows the input (training) data set with the
given function values for this example.

Table 5-1. Training Data Set

xPoint Function Value
0.15 0.0225

0.25 0.0625

0.5 0.25

0.75 0.5625

1 1

1.25 1.5625

1.5 2.25

1.75 3.0625

2 4

56

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Next is the data set for testing the trained network, shown in Table 5-2. The xPoints of

this data set are different from the xPoints in the training data set because the file is used
to test the network at the xPoints not used for network training.

Table 5-2. Testing Data Set

xPoint Function Value
0.2 0.04

0.3 0.09

0.4 0.16

0.7 0.49

0.95 0.9025

1.3 1.69

1.6 2.56

1.8 3.24

1.95 3.8025

Network Architecture

Figure 5-2 shows the network architecture for the example. As already mentioned, the

network architecture for each project is determined experimentally, by trying various

configurations and selecting the one that produces the best result. The network is set to

have an input layer with a single neuron, seven hidden layers (each having five neurons),

and an output layer with a single neuron.

Y

K/

XD

AW

7 A XN

.’4'.\ KIS
N XK

N

Lk
4

RS NRGIA RS X REZ
T IXRE XKL XREL R
0=V givibvSgZvil.vSgZvlies

ARSI 0%

{ 4 578 > X
S N W
/

S~ X NN v'& YAV
N ISP
\'CJ,"‘ “\v . vl'i ﬁ\v S/ 7NN, vl'i “\‘ ‘ v”" A“&?élz’f‘i‘:\%/

NN CNCNNEN

ZaV
A

Input Hidden Quiput
Layer Layers Layers
M\) M)\ M\ N\

N

R
/

p—

J

J

Figure 5-2. Network architecture

Dy Profl Engr Mr Santosh Kumar

57

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Normalizing the Input Data Sets

Both the training and testing data sets need to be normalized on the interval [-1, 1]. Let’s
build the Java program that normalizes those data sets. To normalize a file, it is necessary
to know the max and min values for the fields being normalized. The first column of the
training data set has the min value 0.15 and the max value 2.00. The second column of
the training data set has the min value 0.0225 and the max value 4.00. The first column
of the testing data set has the min value 0.20 and the max value 1.95. The second column
of the testing data set has the min value 0.04 and the max value 3.8025. Therefore, for
simplicity, select the min and max values for both the training and testing data sets as
follows: min = 0.00 and max = 5.00.

The formula used to normalize the values on the interval [-1, 1] is shown here:

£(x)=((x~DL)' (NH-NL))/(DH-DL)+NL

where:

x: Input data point

D;: Minimum (lowest) value of x in the input dataset

Dy;: Maximum (highest) value of x in the input dataset

Ni: The left part of the normalized interval [-1, 1] =-1

Ng: The right part of the normalized interval [-1, 1] =1

When using this formula, make sure that the D; and Dy, values that you use are really
the lowest and highest function values on the given interval; otherwise, the result of the

optimization will not be good. Chapter 6 discusses function optimization outside of the
training range.

Building the Java Program That Normalizes Both
Data Sets

Click the NetBeans icon on your desktop to open the NetBeans IDE. The IDE screen is
divided into several windows. The Navigation window is where you see your projects
(Figure 5-3). Clicking the + icon in front of a project shows the project’s components:
source package, test package, and libraries.

58

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

I‘_.

®
®
®
®
®
®
®
®
®
@
'.
’.
®
®
“
@
)
®
a.
®
®
®

LIS

LA A A XL AL L LA AL L AL LA LA

Encog_SPS00_SidWindows _prcelii®erc_targePricediPerc

Fasan SOV Cranderd ManiiNate OF Ovenad sta

"/
B G Ntk Ca Tt
p = A

; D A —— v

: 1l
‘ — »
| 9%

e N e adal II

Figure 5-3. The NetBeans IDE

To create a new project, select File » New Project. The dialog shown in Figure 5-4
appears.

59

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Steps

1. Choose Project
2 e

Brewpoee
Choose Project
Q Fiter: |
Categories: Projects:
a © Java Appication.
—(3] Javarx & JavaClass Library
(3 Javawed & Java Project with Existing Sources
L) Javaee 2§ Java Free-Form Project
() HTMLS/JavaScript
(] Maven
(] NetBeans Modules
& () Samples
Description:
Creates a new Java SE application in a standard IDE project. You can also generate a main
class n the project, Standard projects use an IDE-generated Ant build script to budd, run, and
debug your project.

<sack [mext> Fos | cacel | mep

Figure 5-4. Crealing a new project

Click Next. The dialog shown in Figure 5-5 will appear.

60

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

| Coremct _SenOhan

!

‘lf

4
J

‘,'3‘;
155

§
!

i

|

e
;! %li ;I.

i
i
1

| Crmaten o e Jows U apphcation = 5 siarderd D€ grumct "o o see gare s & e
P raect Sardert o e an R Art et s . e

;
|

|

i

iﬁ

COCOUPROUOOR I LUUUORUOCOOROY

ssgi

Figure 5-5. Naming the new project

Enter the project name Samplel Norm and click the Finish button. Figure 5-6
shows the dialog.

61

Dr Prof Engr Mr Saniosh Kumar

CHAPTER5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Figure 5-6. Samplel_Norm project

The created project is shown in the Navigation window (Figure 5-7).

Figure 5-7. Created project

The source code became visible in the source code window, as shown in Figure 5-8.

62

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

/ -
* To change this license header, chcocose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
wJ
package samplel norm;

® e W N
— —3

/--
9 -
10 * fauthor 1262666
11 7 §
12 public class Samplel Norm
13 {
14
1s /**
16 T * @param args the command line arguments
17 ~f

[
w©

public static void main(String([]) args)

N
o

{
T // TODO code application logic here
}

NN
- W N
~

Figure 5-8. The source code for the new project

As you can see, this is just a skeleton of the program. Next, add the normalization
logic to the program. Listing 5-1 shows the source code for the normalization program.

Listing 5-1. Program Code That Normalizes Both the Training and Test Data Sets

// Normalize all columns of the input CSV dataset putting the result

// in the output CSV file.

/7

// The first column of the input dataset includes the xPoint value and

// the second column is the value of the function at the point X.

// ====z==s============ssssssssssssssssSsSSSSSSSSsssSsSsSSSSSsSSsssSsSsssssss

63

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK
package sample2_norm;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.PrintWriter;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.nio.file.*;

public class Sample2 Norm

{
// Interval to normalize
static double Nh = 1;
static double N1 = -1;

// First column
static double minXPointDl
static double maxXPointDh

0.00;
5.00;

// Second column - target data
static double minTargetValueDl
static double maxTargetValueDh

0.00;
5.00;

public static double normalize(double value, double Dh, double D1)

{
double normalizedValue = (value - D1)*(Nh - N1)/(Dh - D1) + N1;

return normalizedValue;

}

public static void main(String[] args)

{

// Config data (comment and uncomment the train or test config data)

// Config for training

//String inputFileName = "C:/My Neural Network Book/Book Examples/
Sample2 _Train Real.csv";

//String outputNormFileName =

64

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK
“C:/My_Neural Network Book/Book Examples/Sample2 Train_Norm.csv";

//Config for testing
String inputFileName = "C:/My_Neural Network Book/Book_ Examples/
Sample2_Test Real.csv";
String outputNormFileName = "C:/My_Neural Network Book/Book Examples/
Sample2 Test Norm.csv”;

BufferedReader br = null;
PrintWriter out = null;

String line = "";

String cvsSplitBy = ",";

String strNormInputXPointValue;
String strNormTargetXPointValue;
String fullline;

double inputXPointValue;

double targetXPointValue;

double normInputXPointValue;
double normTargetXPointValue;
int 4 = <13

try

{
Files.deleteIfExists(Paths.get(outputNormFileName));

br = new BufferedReader(new FileReader(inputFileName));
out = new
PrintWriter(new BufferedWriter(new FileWriter(outputNormFileName)));

while ((line = br.readLine()) != null)
{
i++;
if(i == 0)

{
// Write the label line

out.println(line);

}

65

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

else

{
// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

inputXPointValue = Double.parseDouble(workFields[0]);
targetXPointValue = Double.parseDouble(workFields[1]);

// Normalize these fields
normInputXPointValue =

normalize(inputXPointValue, maxXPointDh, minXPointDl);
normTargetXPointValue =
normalize(targetXPointValue, maxTargetValueDh, minTargetValueDl);
// Convert normalized fields to string, so they can be inserted
//into the output CSV file
strNormInputXPointValue = Double.toString(noxrmInputXPointValue);
strNormTargetXPointValue = Double.toString(normTargetXPointValue);

// Concatenate these fields into a string line with
//coma separator
fullline =
strNormInputXPointValue + "," + strNormTargetXPointValue;

// Put fullline into the output file
out.println(fulllLine);

} // End of IF Else

} // End of WHILE

} // End of TRY
catch (FileNotFoundException e)

{
e.printStackTrace();

System.exit(1);

}
catch (IOException io)

{

66

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

io.printStackTrace();

System.exit(2);
}
finally
{
if (br !'= null)
{
try
{
br.close();
out.close();
}
catch (IOException e1)
{
el.printStackTrace();
System.exit(3);
}
}
}

} // End of the class

This is a simple program, and it does not need much explanation. Basically, you
set the configuration to normalize either the training or testing file by commenting and
uncommenting the appropriate configuration sentences. You read the file lines in a loop.
For each line, break it into two fields and normalize them. Next, you convert both fields
back to strings, combine them into a line, and write the line to the output file.

Table 5-3 shows the normalized training data set.

67

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Table 5-3. Normalized Training Data Set

xPoint Actual Value
-0.94 -0.991

-0.9 -0.975

-0.8 -0.9

-0.7 -0.775

-0.6 -0.6

-0.5 -0.375

-0.4 -0.1

-0.3 0.225

-0.2 0.6

Table 5-4 shows the normalized testing data set.

Table 5-4. Normalized Testing Data Set

xPoint Actual Value
-0.92 -0.984

-0.88 -0.964

-0.84 -0.936

-0.72 -0.804

-0.62 -0.639

-0.48 -0.324

-0.36 0.024

-0.28 0.296

-0.22 0.521

You will use these data sets as the input for the network training and testing.

68

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Building the Neural Network Processing Program

To create a new project, select File » New Project. The dialog shown in Figure 5-9
appears.

CEHISSE~=="J0-¥8 b-B-0-

. A0 _Coremct_Senten I

D e o ot Des

B tom _Cwcswm Pemaon

O Crwrit Dodselote Berten ot ge o e
D Gt DotCpte e o g oM
P rwar g Dwe rom R b

-9 2 were 4 o Pree Porm Mamct
O e Paages) ey
I R i S L j“
=2 et Pacagm Gesre Sl
B e petage » qj\-
L B

g N0 _Long e e I Crostes & new Jove M applcatins r & viardert DE oramct Yo cr sne gerer s & mar
B T e et Dardert romcn e an 08 -geaersted Ast buld scrgt © DS S e
. = MO Yo e

e o O] o | oo | we |

.Y

LA A A A A4l 44

{
i
¥

Figure 5-9. NetBeans IDE, with New Project dialog open

Click Next. On the next screen, shown in Figure 5-10, enter the project name and
click the Finish button.

69

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

x
Steps Name and Location
1. Choose Project ProjectName: [Sample 1]

2. Name and Location

Project Location: IC:Wsas\ZéM‘OomntsWetSeMomts Browse... I
ProjectFoider: |C:\Users\262666\Documents NetBeansProjects\Sample 1

[~ Use Dedicated Folder for Storing Libranies

Libranes Folder: | Browee...

Different users and projects can share the same compilation
lbraries (see Help for detais).

[V Create Man Class [sample 1.Sample 1

<Bock | newts [[Emsh | cowel | Hep |

Figure 5-10. New NetBeans project

The project is created, and you should see it in the Navigation window (Figure 5-11).

Figure 5-11. Project Samplel

The source code of the program appears in the source code window (Figure 5-12).

70

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

6 Senle e x o

srce bty |[QB-8-QARSFBE(PELB (AU 0| @

1 /=

2 = To change this license header, choose License Headers in Project Properties.

3 * To change this template file, chocose Tocls | Templates

4 * and open the template in the editor.

S «/

é package samplel;

7

8 /o*

9 -

10 * Rauthor 1262666

11 wy

12 public class Samplel

13 {

14

15 e

16 T * @param args the command line arguments

17 v/

18 public static veoid main(String([] arxgs)

19 {

20 T // TODO code application logic here

21 }

22

23 }

24

Figure 5-12. Source code for program Samplel.javal

Again, this is just the automatically generated skeleton of the Java program. Let’s
add the necessary logic here. First, include all the necessary import files. There are three
groups of import statements (Java imports, Encog imports, and XChart imports), and two
of them (the one that belongs to Encog and the next that belongs to XChart) are marked
as errors. This is because the NetBeans IDE is unable to find them (Figure 5-13).

71

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

souce Mooy @ B-0-QALEPRIR LAV O -

import java.util.locale;
impore java.util.Propercies;

import org.encog.Encog:

import Org.encog.engine.network.activation.ActivationTANH;
import oxg.encog.engine.network.activation.ActivationRell;
import org.encog.ml.data.MLData;

import org.encog.ml.daca.MLDataPair;

import org.encog.ml.data.MlDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDatalODEC;

import org.encog.ml.data.buffer.codec.DataSetlODEC:

import orxg.encog.neural.networks.BasicNetvork:

import org.enceg.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.ResilientPropagaction:
import org.encog.persist.EncoglirectoryPersistence;

import org.encog.util.csv.CSVFormatc;

import oxg.knowm.xchart.SvingWrapper;

import oxg.knowm.xchart.XYCrhare:

import org.knowm.xchart.XYChartBuilder;

import oxg.knowm.xchart.XYSeries:

import oxrg.knowm.xchart.demo.charts.Examplelrare:
import orxg.knowm.xchart.style.Styler.LlegendPosition:
import org.knowm.xchart.style.colors.Chartlolor;
import org.knowm.xchart.style.colors.XChartSeriesColors:;
import oxg.knowm.xchart.style.lines.Serieslines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import oxg.knowm.xchart.BitmapEncoder:

import oxg.knowm.xchart.BitmapEnceder.BitmapFormat:
import orq.knowm.xchart.CuickChare:

Figure 5-13. Import statements marked as errors

To fix this, right-click the project and select Properties. The Project Properties dialog
will appear (Figure 5-14).

2

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

M B30 Vew Nevoiw Sesce Refacty Run Detug Mefle Tean Tach Wedee D

M T O O =
i x Comgores:
R - g 3o Pt [1.8 Doty 2] veren vatma |
N e - vrarse [»
& o feemw > _Seroten raie mge oty S _j
O Lo UL Satiedonm e e oo Y Compte | Pracesaer | B | Compte Tests | B Tewt |
O Vg N0 4G _SAENran_rossr ot e gairosdf e e
& Lo 250 poneCum It et o et > o e ——
O Lo P00 _SanIPurts_ron rcad B (S P P = Add gt l
& 000 PHE ANt roaOmtw s e eaon —
[L - - "”‘" ‘."M ... I
O 1 R0 Suntert Mot M2 reetate Gises A 8 e l
O g Snocaserresa Daw roe o o
- Rt “' o pde |
Ot iioe Dets
b e Dosetoom rosdMer: i ge st it P l
b rerm g Benecse ot tw in P oaOi e
R I i L e - e '
D R ¥ e pre— l
bt Senteteona profe o w e dra®t
D e e R
§ & e 2 Seowd e
O resee Deecoren_Sdsndoe
v B hesee ten e
¥ & Preowe s pem
b O rodw —
& & ProOw Semers e nad
4
g Soson Pacage 7 Bt agecn o1 Csapen
Sl Pl
- L] o | |
g R -~
e ‘“W‘?: o -" - port Sig.Enevm.nchart. Bitaaplacoder. Jitasplommet;

Figure 5-14. Project Properties dialog

On the left column of the Project Properties dialog, select Libraries. Click the Add
JAR/Folder button on the right of the Project Properties dialog. Click the down arrow in
the Java Platform field (at the top of the screen) and go to the location where the Encog
package is installed (Figure 5-15).

x4
S (¢ Relative Path:
). Instalaton [
€ path from Variable:
<no suitable variable > I
¢ Absolute Path:
I
Flename: [C:\Download\Encog3\instalation | Open I
Flesoftype: |Classpath Entry (folder, ZIP or JAR fie) = Cancel |

Figure 5-15. Location where Encog is installed

Double-click the Installation folder, and two JAR files will be displayed (Figure 5-16).
73

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

B Add JAR/Folder x|

tookin: [). Instalaton o |5 0 s

] encog-core-3.4.jar | o
g ' 4] encog-workbench-3.4.0-al.jar @ |Relative Path;
Recent Items I

€ path from Vaniable:

€ Absolute Path;

I

Flename: [C:\Download\Encog3\instalation |LI
Flesof type: [Classpath Entry (Folder, ZIP or JAR fie) =] ot |

Figure 5-16. Encog JAR files location

Select both JAR files and click the Open button. They will be included in a list of JAR
files to be added to the NetBeans IDE (Figure 5-17).

' Sources " Jevarariorm: [0% 1.8 Defaun =] Marage atiorms...

L wies Folder: | Browse... |

2 Comple | processor | Run | Comple Tests | Run Tess |
7 Deploymert Comple-tme Lt ares:

Comple-tme rares are oropagsted 1o ol Rvary Categores.
& Buid Projects on Classpeth

o | coe | o |

Figure 5-17. List of Encog JAR files to be included in the NetBeans IDE
74

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Click the Add JAR/Folder button again. Click again the down arrow of the Java
Properties field and go to the location where the XChart package is installed (Figure 5-18).

x4
Look in: l;, XChart Zl b A
b xchart-3.5.0| o
g, 3, xchart-3.5.0.20 @ Relative Path:
Recent Items I

€ Path from Variable:

<no suitable variable > I

€ Absolute Path:

Flename: [C:\Dowmload\XChart | Open I

Files of type: |cmpm£nw(fowu.zvormfk) L] i‘

Figure 5-18. List of XChart JAR files to be included in the NetBeans IDE

Double-click the XChart-3.5.0 folder and select two XChart JAR files (Figure 5-19).

x
Lookin: | J, xchart-3.5.0 l2E
B en Reference as
g, char t-demo-3.5.0.) (" Relative Path:
Recent Items Joofeufe- . Poownload XChart/xchart-:
e ¢ Path from Variable:
. s . |
Desktop (7 Absolute Path:
|C:\Pownload\XChart\xchart-3.5.0\xch
Flename: |“xchart-3.5.0.jar" “xchart-demo-3.5.0.5" | Open |
Flesof type: |Classpath Entry (folder, ZIP or JAR fie) | Concel |

Figure 5-19. List of XChart JAR files to be included in the NetBeans IDE

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Click the Open button. Now you have the list of four JAR files (from Encog and
XChart) to be included in the NetBeans IDE (Figure 5-20).

P Project Propertics - Samplel !l
o Sources Java Platform: 0K 1.8 (Defoult) x| Manage Platforms... I
4 A :‘;@ Loraries Foider: | Bronse... l
o Complng
S Compée | Processor | Run | Comple Tests | Run Tests |
9 Deployment Comple-tme Liraries:
> Documentng 15 C:\Downriosd Encog 3unstalateniencog <ore-3.4.38¢ Add Progect... |
o Run
2 O Agpicaton
9 WebStart
O License Headers
Formattng

Comple-time lbraries are propagated to al lbrary categories.
¥ Buld Projects on Classpoth

Figure 5-20. List of JAR files to be included in the NetBeans IDE

Finally, click OK, and all the errors will disappear.
Instead of doing this for every new project, a better way is to set a new global library.
From the main bar, select Tools » Libraries. The dialog shown in Figure 5-21 will appear.

76

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

¥ Ant Library Manager i ‘ﬂ

Libraries location: |Global Libraries ~|
Libraries:

t . Beans Binding
, g Comet from GlassFish Classpath I | ke
, CopyLibs Task
- §B Edipselink (OPA 2.1) Library Classpath:

! . EdipseLink from GlassFish C:\encog-core-3.4\ib\encog-core-3.4.jar
-89 Edipselink-ModelGen (JPA 2. T
B FavaFX_Library
8 Hamorest 1.3 — S
& Hibernate 4.3.x
@ Hbernate 4.3.x Modelgen il
BB Hibernate 4.3.x(JPA2.1)
; ' Java DB Driver Move Down
-G JavaEE 6 API Library

-8 JavaEE 6 Endorsed API Libra
-8 JavaEE 7 API Library

8B JavaEE 7 Endorsed API Libra
8B Java EE from GlassFish

8P JavaEE Web 6 API Library =

Rl | [

4| Library Name: [Beans Binding

[ok | cacel | Hep

Figure 5-21. Creating a global library

Now, you can repeat these same steps on the project level. Do this by clicking the
Add JAR/Folder button twice (for Encog and XChart) and add the appropriate JAR files
for the Encog and XChart packages.

Program Code

In this section, I will discuss all the important fragments of the program code using
Encog. Just remember that you can find documentation about all the Encog APIs and
many examples of programming on the Encog website. See Listing 5-2.

77

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Listing 5-2. Network Processing Program Code

// Approximate the single-variable function which values are given at 9
points.

// The input train/test files are normalized.

// P e e e el

package sample2;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.localDate;
import java.time.Month;

import java.time.Zoneld;

import java.util.Arraylist;
import java.util.Calendar;
import java.util.Date;

import java.util.list;

import java.util.locale;

import java.util.Properties;

78

Dy Profl Engr Mr Santosh Kumar

import
import
import
import
import
import
import
import
import
import
import
import

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

org.encog.Encog;
org.encog.engine.network.activation.ActivationTANH;
org.encog.engine.network.activation.ActivationRelU;
org.encog.ml.data.MLData;
org.encog.ml.data.MLDataPair;
org.encog.ml.data.MLDataSet;
org.encog.ml.data.buffer.MemoryDataloader;
org.encog.ml.data.buffer.codec.CSVDataCODEC;
org.encog.ml.data.buffer.codec.DataSetCODEC;
org.encog.neural.networks.BasicNetwork;
org.encog.neural.networks.layers.BasiclLayer;
org.encog.neural.networks.training.propagation.resilient.

ResilientPropagation;

import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
public
{

H

static double Nh
static double N1

org.encog.persist.EncogDirectoryPersistence;
org.encog.util.csv.CSVFormat;

org.knowm.xchart.SwingWrapper;
org.knowm.xchart.XYChart;
org.knowm.xchart.XYChartBuilder;
org.knowm.xchart.XYSeries;
org.knowm.xchart.demo.charts.ExampleChart;
org.knowm.xchart.style.Styler.LegendPosition;
org.knowm.xchart.style.colors.ChartColor;
org.knowm.xchart.style.colors.XChartSeriesColors;
org.knowm.xchart.style.lines.SerieslLines;
org.knowm.xchart.style.markers.SeriesMarkers;
org.knowm.xchart.BitmapEncoder;
org.knowm.xchart.BitmapEncoder.BitmapFormat;
org.knowm.xchart.QuickChart;
org.knowm.xchart.SwingWrapper;

class Sample2 implements ExampleChart<XYChart>

Interval to normalize
15
_1;

79

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

80

// First column

static
static

double minXPointDl
double maxXPointDh

0.00;
5.00;

// Second column - target data

static
static

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

double minTargetValueDl
double maxTargetValueDh

0.00;
5.00;

double doublePointNumber = 0.00;

int intPointNumber = 0;

InputStream input = null;

int intNumberOfRecordsInTrainFile;

double[] arrPrices = new double[2500];

double normInputXPointValue = 0.00;

double normPredictXPointValue = 0.00;

double normTargetXPointValue = 0.00;

double normDifferencePerc = 0.00;

double denormInputXPointValue = 0.00;

double denormPredictXPointValue = 0.00;
double denormTargetXPointValue = 0.00;

double valueDifference = 0.00;

int returnCode = 0;

int numberOfInputNeurons;

int numberOfOutputNeurons;

int intNumberOfRecordsInTestFile;

String trainFileName;

String priceFileName;

String testFileName;

String chartTrainFileName;

String chartTestFileName;

String networkFileName;

int workingMode;

String cvsSplitBy = ",";

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new Arraylist<Double>();
List<Double> yData2 = new ArraylList<Double>();

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

static XYChart Chart;
@override
public XYChart getChart()

{

// Create Chart
Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.
getAWTColor(ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColoxr(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED, Font.BOLD, 24));
Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF, Font.ITALIC, 18));
Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.
PLAIN, 11));

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Set the workin mode the program should run (workingMode = 1 - training,
// workingMode = 2 - testing)

81

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

workingMode = 1;

try
{
)
If (workingMode == 1)
{
// Config for training the network
workingMode = 1;
intNumberOfRecordsInTrainFile = 10;
trainFileName = "C:/My Neural Network Book/Book Examples/
Sample2 Train Norm.csv";
chartTrainFileName = "Sample2 XYLine Train Results Chart";
}
else
{

// Config for testing the trained network

// workingMode = 2;

// intNumberOfRecordsInTestFile = 10;

// testFileName = "C:/My Neural Network Book/Book Examples/
Sample2 Test Norm.csv";

// chartTestFileName = "XYLine Test Results Chart";

}

// Common configuration data

networkFileName = "C:/Book_Examples/Sample2_Saved Network File.csv";
numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

// Check the working mode to run

// Training mode.
if(workingMode == 1)
{
File file1
File file2

new File(chartTrainFileName);
new File(networkFileName);

if(filel.exists())
filel.delete();

82

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the return code variable

do
{

returnCode = trainValidateSaveNetwork();

} while (returnCode > 0);

}

// Test mode.
if(workingMode == 2)

{
// Test using the test dataset as input

loadAndTestNetwork();
}

}

catch (NumberFormatException e)

{

System.err.println("Problem parsing workingMode.

workingMode = " + workingMode);
System.exit(1);

}
catch (Throwable t)

1
t.printStackTrace();

System.exit(1);

}
finally

{
Encog.getInstance().shutdown();

}
Encog.getInstance().shutdown();

return Chart;

} // End of the method
83

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// Load CSV to memory.
// @return The loaded dataset.
/] mmmmmmmmm e e e e ————
public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers,
CSVFormat
format, boolean significance)

{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal,
significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;
}
/| ======z==z===z==z===z==z=======z===========s=======s=s=ss=ss===s==========

// The main method.
// @param Command line arguments. No arguments are used.
/! ========z=====z===z==z=======z===============================z====z=====
public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new Sample2();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

static public int trainvValidateSaveNetwork()

{
// Load the training CSV file in memory

MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numberOfInputNeurons,numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

84

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

// Output layer
network.addLayer(new BasicLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// Train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;
returnCode = 0;

do

{
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;

if (epoch >= 500 && network.calculateError(trainingSet) > 0.000000031)

{

returnCode = 1;

85

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

86

System.out.println("Try again");
return returnCode;

}

} while (network.calculateError(trainingSet) > 0.00000003);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");

double sumNormDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxNormDifferencePerc = 0.00;

int m= -1;
double xPointer = -1.00;

for(MLDataPair pair: trainingSet)

{

m++;
xPointer = xPointer + 2.00;

//if(m == 0)
// continue;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl -
maxXPointDh)*normInputXPointValue - Nh*minXPointDl +
maxXPointDh *N1)/(N1 - Nh);
denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*

Dy Profl Engr Mr Santosh Kumar

}

XYSeries seriesi

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

normTargetXPointValue - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValue - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

valueDifference = Math.abs(((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue)*100.00);

System.out.println ("xPoint = " + denormTargetXPointValue +
" denormPredictXPointValue = " + denormPredictXPointValue +
valueDifference = " + valueDifference);

n

sumNoxrmDifferencePerc = sumNormDifferencePerc + valueDifference;

if (valueDifference > maxNormDifferencePerc)
maxNoxrmDifferencePerc = valueDifference;

xData.add(denormInputXPointValue);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

// End for pair loop

Chart.addSeries("Actual data", xData, yData1);

XYSeries series2 = Chart.addSeries("Predict data", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

try

{

//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

87

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

88

catch (IOException ex)

{

ex.printStackTrace();

System.exit(3);

}

// Finally, save this trained network

EncogDirectoryPersistence. saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNormDifferencePerc/
intNumberOfRecordsInTrainFile;

System.out.println(" ");
System.out.println("maxErrorDifferencePerc = " + maxNormDifferencePerc +

averErrorDifferencePerc = " + averNormDifferencePerc);

returnCode = 0;
return returnCode;

// End of the method

static public void loadAndTestNetwork()

{

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();
List<Double> yData1
List<Double> yData2

new ArraylList<Double>();
new ArraylList<Double>();

double targetToPredictPercent = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputXPointValueFromRecord = 0.00;

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

double normTargetXPointValueFromRecord = 0.00;
double normPredictXPointValueFromRecord = 0.00;

BufferedReader br4;
BasicNetwork network;
int k1 = 0;

int k3 = 0;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory

MLDataSet testingSet =

loadCSV2Memory (testFileName,numberOfInputNeurons, numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject (new
File(networkFileName));

it ©== 13
double xPoint = -0.00;

for (MLDataPair pair: testingSet)
{

i+4;

xPoint = xPoint + 2.00;

MLData inputData = pair.getInput();

MLData actualData = pair.getIdeal();

MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputXPointValueFromRecord = inputData.getData(0);
normTargetXPointValueFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

89

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// De-normalize the obtained values
denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl +

maxXPointDh*N1)/(N1 - Nh);

denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

targetToPredictPercent = Math.abs((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue*100);

System.out.println("xPoint =

"

+ denormInputXPointValue +

"

denormTargetXPointValue = " + denormTargetXPointValue +

n

denormPredictXPointValue = " + denormPredictXPointValue +
targetToPredictPercent = " + targetToPredictPercent);

n

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredictPercent;

// Populate chart elements
xData.add(denormInputXPointValue);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop
// Print the max and average results

System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/intNumberOfRecordsInTestFile;

System.out.println("maxErrorDifferencePercent = " + maxGlobalResultDiff);
System.out.println("averErrorDifferencePercent = " + averGlobalResultDiff);

90

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yData1);
XYSeries series2 = Chart.addSeries("Predicted", xData, yData2);

seriesl.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setLineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{

bt.printStackTrace();
}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for test records");
} // End of the method
} // End of the class

At the top, there is a set of instructions required by the XChart package, and they
allow you to configure the way the chart should look (Listing 5-3).

Listing 5-3. Set of Instructions That Is Required by the XChart Package
static XYChart Chart;

@verride
public XYChart getChart()

{

// Create Chart
Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();
91

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// Customize Chart

Chart.getStyler().setPlotBackgroundColor(ChartColor.

getAWTColor (ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColox(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColox(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED, Font.BOLD, 24));
Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF, Font.ITALIC, 18));
Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.PLAIN, 11));
Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

The program can be run in two modes. In the first mode (training, workingMode = 1),
the program trains the network, saves the trained network on disk, prints the results,
displays the chart results, and saves the chart on disk. In the second mode (testing,
workingMode = 2), the program loads the previously saved trained network, calculates
the predicted values at the points that were not used in the network training, prints the
results, displays the chart, and saves the chart on disk.

The program should always be run in the training mode first, because the second
mode depends on the training results produced in the training mode. The configuration
is currently set to run the program in training mode (see Listing 5-4).

92

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Listing 5-4. Code Fragment of the Training Method Code

// Set the workin mode the program should run:
(workingMode = 1 - training, workingMode = 2 - testing)

workingMode = 1;

try
{
If (workingMode == 1)
{
// Config for training the network
workingMode = 1;
intNumberOfRecordsInTrainFile = 10;
trainFileName = "C:/My Neural Network Book/Book Examples/
Sample2 Train Norm.csv";
chartTrainFileName = "Sample2 XYLine Train Results Chart";
}
else
{

// Config for testing the trained network

// workingMode = 2;

// intNumberOfRecordsInTestFile = 10;

// testFileName = "C:/My Neural Network Book/Book Examples/
Sample2 Test Norm.csv";

// chartTestFileName = "XYLine Test Results Chart";

}

// Common configuration statements (stays always uncommented)
networkFileName = "C:/Book Examples/Saved Network File.csv";
numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

Because workingMode is currently set to 1, the program executes the training method
called trainValidateSaveNetwork(); otherwise, it calls the testing method called
loadAndTestNetwork() (see Listing 5-5).

93

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Listing 5-5. Checking the workingMode Value and Executing the Appropriate
Method

// Check the working mode

if(workingMode == 1)
{

// Training mode.

File filel = new File(chartTrainFileName);
File file2 = new File(networkFileName);
if(file1.exists())
filei.delete();
if(file2.exists())
file2.delete();
trainValidateSaveNetwork();
}
if(workingMode == 2)
{
// Test using the test dataset as input
loadAndTestNetwork();
}
}
catch (NumberFormatException e)
{
System.err.println("Problem parsing workingMode. workingMode = " +
workingMode) ;
System.exit(1);
}
catch (Throwable t)
{
t.printStackTrace();
System.exit(1);
}
94

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

finally

{
Encog.getInstance().shutdown();

}

Listing 5-6 shows the training method logic. This method trains the network,
validates it, and saves the trained network file on disk (to be used later by the testing
method). The method loads the training data set into memory. The first parameter
is the name of the input training data set. The second and third parameters indicate
the number of input and output neurons in the network. The fourth parameter (true)
indicates that the data set has a label record. The remaining parameters specify the file
format and the language.

Listing 5-6. Fragments of the Network Training Logic

MLDataSet trainingSet =
loadCSv2Memory (trainFileName, numbexOfInputNeurons, numbexrOfOutputNeurons,
true,CSVFormat.ENGLISH,false);

After loading the training data set in memory, a new neural network is built by
creating the basic network and adding the input, hidden, and output layers to it.

// create a neural network
BasicNetwork network = new BasicNetwork();

Here'’s how to add the input layer:

network.addLayer(new BasiclLayer(null,true,1));

The first parameter (null) indicates that this is the input layer (no activation
function). Enter true as the second parameter for the input and hidden layers, and enter
false for the output layer. The third parameter shows the number of neurons in the
layer. Next you add the hidden layer.

network.addLayer(new BasiclLayer(new ActivationTANH(),true,2));

The first parameter specifies the activation function to be used (ActivationTANH()).

95

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Alternatively, other activation functions can be used such as the sigmoid function
called ActivationSigmoid(), the logarithmic function called ActivationL0G(), the
linear relay called ActivationReLU(), and so on. The third parameter specifies the
number of neurons in this layer. To add the second hidden layer, simply repeat the
previous statement.

Finally, add the output layer, as shown here:

network.addLayer(new BasicLayer(new ActivationTANH(),false,1));

The third parameter specifies the number of neurons in the output layer. The next
two statements finalize the creation of the network:

network.getStructure().finalizeStructure();
network.reset();

To train the newly built network, you specify the type of backpropagation. Here, you
specify resilient propagation; it's the most advanced propagation type. Alternatively, the
regular backpropagation type can be specified here.

final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

While the network is trained, you loop over the network. On each step of the loop,
you get the next training iteration number, increase the epoch number (see Chapter 2
for the epoch definition), and check whether the network error for the current iteration
can clear the error limit being set to 0.00000003. When the error on the current iteration
finally becomes less than the error limit, you exit the loop. The network has been trained,
and you save the trained network on disk. The network also stays in memory.
int epoch = 1;

do
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());

epoch++;
} while (network.calculateError(trainingSet) > 0.00000046);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

96

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

The next section of the code retrieves input, actual, and predict values for each
record in the training data set. First, the inputData, actualData, and predictData
objects are created.

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

Having done that, you iterate over the MLDataPair pair object by executing the
following instructions:

normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

A single field in inputData, actualData, and predictData objects has the
displacement zero. In this example, there is only one input field and one output field in a
record. Should the record have two input fields, you would use the following statements
to retrieve all the input fields:

inputData.getData(0);
inputData.getData(1);

normInputXPointValuel
normInputXPointValue2

Conversely, should the record have two target fields, you would use similar
statements to retrieve all the target fields, as shown here:

normTargeValuel
normTargeValue2

actualData.getData(0);
actualData.getData(1);

The predicted value is processed in a similar way. The predicted value predicts
the target value for the next point. The values being retrieved from the network
are normalized because the training data set that the network processes has
been normalized. After those values are retrieved, you can denormalize them.
Denormalization is done by using the following formula:

f(x):((DL _DH)*X_NH*DL_*_DH*NL)/(NL _NH)

97

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

where:

x: Input data point

D;: Min (lowest) value of x in the input data set
Dy;: Max (highest) value of x in the input data set
N;: The left part of the normalized interval [-1, 1]

Nu: The right part of the normalized interval [-1, 1]

denormInputXPointValue = ((minXPointDl - maxXPointDh)*normInputXPointValue -
Nh*minXPointDl + maxXPointDh *N1)/(N1 - Nh);

denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*normTarget
XPointValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

You also calculate the error percent as the difference percent between the
denormTargetXPointValue and denormPredictXPointValue fields. You can print
the results, and you can also populate the values denormTargetXPointValue and
denormPredictXPointValue as the graph element for the currently processed record
xPointer.

xData.add(denormInputXPointValue);
yDatai.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop // End for the pair loop

Now save the chart file on disk and also calculate the average and maximum percent
difference between the actual and predict values for all processed records. After exiting
the pair loop, you can add some instructions needed by the chart to print the chart series
and save the chart file on disk.

98

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

XYSeries seriesi
XYSeries series2

Chart.addSeries("Actual data", xData, yData1);
Chart.addSeries("Predict data", xData, yData2);

seriesl.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setLineStyle(SeriesLines.SOLID);

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{
ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNormDifferencePerc/4.00;
System.out.println(" ");

System.out.println("maxErrorPerc = " + maxNormDifferencePerc +

"averErrorPerc = " + averNormDifferencePerc);
} // End of the method

99

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Debugging and Executing the Program

When the program coding is complete, you can try executing the project, but it seldom
works correctly. You will need to debug the program. To set a breakpoint, simply click
the program source line number. Figure 5-22 shows the result of clicking line 180. The
red line confirms that the breakpoint is set. If you click the same number again, the
breakpoint will be removed.

[EEHAS® &= J0-¥ 6 b &G

e B-8-QUSSGBL ¢ - 5 1 1 i *
” £ ® *Ci/Beek_Daseples/Soved Netverk Tile.sev™, "F
1< oo it St 1
W § Preswe 25 Recee Fres » Moot aoee e I
¥ & Moo Drectres St ol : s
B & vecwe ow b X ek tre Ring wode
¥ & Mreowe_Tien fiea A
¥ & wwaow: 179 Tratming moce. Trais. walidate, #nd save the tzained mezvark file
5 & PeaOwt Ressens n.l ‘—J‘
(g Source hackages $
gmm w File f5lel = new Filelcsarsioninlileiane) B
PR - FU Tile f1lel = new File(networafileXane): {
= Tent Padages i 8
=G wwe ity Sf(falel axinns ()
= L Testlbvaes e filel. deletel)s
& & seeoe: w
O @l SarePecuge i Af(fiied aniatelh)
&) wroer 1y filed.deletel):
L el A -y
@G TestPacoges n traisValidateSaveNetvork(): il
® v i)
@ G Testubeanes A 2
O Snveiom e sode, Te
» & serve) 188 aA prtege
B Semved Se Condate 18 Atvorks agiade *=)
& serveed_Se_Cociste Test =] « i
8- & Sewes i TEPT WriSD SAe Test MEAset ae Ehgus 1
3-8 Sercet Corwnct ding Wredens pt 1oedAndTestRetwark () . J:l
& & sempes rarm gty rcser I — | -
& § tarver et Owt I L e ——
" o = [ovase conoe = | Prwthan_Remsearch () x | .
3 ey - |
> 7] Yosr ® 017,00 Pries ® 33TE.33
3 B e
:“ u Yeer = 1954.00 Priee = 100600
frheed o e
e = Yesr = 1010.00 Prise = 374043
~ - e 168.9
|®TOTT /8 @ (& | |

Figure 5-22. Setting the breakpoint

Here, you should set a breakpoint at the logic that checks which working mode to
run. After setting the breakpoint, select Debug » Debug Project from the main menu.
The program starts executing and then stops at the breakpoint. Here, if you move the
cursor on top of any variable, its value will be displayed in the pop-up window.

To advance execution of the program, click one of the menu arrow icons, depending
on whether you want to advance execution by one line, go inside the executing method,
exit the current method, and so on (see Figure 5-23).

€ 68 & @ ¥ £
—aa——

Figure 5-23. Icon for advancing execution while debugging

100

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

To run the program, select Run » Run Project from the menu. The execution results
are shown in the log window.

Processing Results for the Training Method

Listing 5-7 shows the training results.

Listing 5-7. Training Processing Results

RecordNumber = 0 TargetValue = 0.0224 PredictedValue = 0.022898 DiffPerc = 1.77
RecordNumber = 1 TargetValue = 0.0625 PredictedValue = 0.062009 DiffPerc = 0.79
RecordNumber = 2 TargetValue = 0.25 PredictedValue = 0.250359 DiffPerc = 0.14
RecordNumber = 3 TargetValue = 0.5625 PredictedValue = 0.562112 DiffPerc = 0.07
RecordNumber = 4 TargetValue = 1.0 PredictedValue = 0.999552 DiffPerc = 0.04
RecordNumber = 5 TargetValue = 1.5625 PredictedValue = 1.563148 DiffPerc = 0.04
RecordNumber = 6 TargetValue = 2.25 PredictedValue = 2.249499 DiffPerc = 0.02
RecordNumber = 7 TargetValue = 3.0625 PredictedValue = 3.062648 DiffPerc = 0.00
RecordNumber = 8 TargetValue = 4.0 PredictedValue = 3.999920 DiffPerc = 0.00

maxExrrorPerc = 1.769902752691229
averErrorPerc = 0.2884023848904945

The average error difference percent for all records is 0.29 percent, and the max error
difference percent for all records is 1.77 percent.

The chart in Figure 5-24 shows the approximation results at nine points where the
network was trained.

101

Dy Profl Engr Mr Santosh Kumar

CHAPTER5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

Figure 5-24. The chart of the training results

The actual chart and the predicted (approximation) chart are practically overlapping
at the points where the network was trained.

Testing the Network

The test data set includes records that were not used during the network training. To
test the network, you need to adjust the program configuration statements to execute
the program in test mode. To do this, you comment out the configuration statements for
the training mode and uncomment the configuration statements for the testing mode
(Listing 5-8).

Listing 5-8. Configuration to Run the Program in Test Mode

If (workingMode == 1)
{

// Config for training the network
workingMode = 1;
intNumberOfRecordsInTrainFile = 10;

102

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

trainFileName = "C:/My_Neural Network Book/Book_ Examples/
Sample2_Train Norm.csv";
chartTrainFileName = "Sample2 XYLine Train Results Chart";

else

// Config for testing the trained network

// workingMode = 2;

// intNumberOfRecordsInTestFile = 10;

// testFileName = "C:/My Neural Network Book/Book Examples/
Sample2 Test Norm.csv";

// chartTestFileName = "XYLine Test Results Chart";

networkFileName = "C:/Book Examples/Saved Network File.csv";
numberOfInputNeurons = 1;
numberOfOutputNeurons = 1;

The processing logic of the test method is similar to the training method; however,
there are some differences. The input file that the method processes is now the testing
data set, and the method does not include the network training logic because the
network has been already trained and saved on disk during the execution of the training
method. Instead, this method loads the previously saved trained network file in memory
(Listing 5-9).

You then load the testing data set and the previously saved trained network file in
memory.

Listing 5-9. Fragments of the Testing Method

// Load the test dataset into memory

MLDataSet testingSet =

loadCSV2Memory(testFileName, numberOfInputNeurons,numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

103

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

// Load the saved trained network
network =
(BasicNetwork)EncogDirectoryPersistence.loadObject (new
File(networkFileName));

You iterate over the pair data set and obtain from the network the normalized input
and the actual and predicted values for each record. Next, you denormalize those values
and calculate the average and maximum difference percents (between the denormalized
actual and predicted values). After getting those values, you print them and also
populate the chart element for each record. Finally, you add some code for controlling
the chart series and save the chart on disk.

int 1 = = 43
double xPoint = -0.00;

for (MLDataPair pair: testingSet)
{
it+;
xPoint = xPoint + 2.00; // The chart accepts only double and
Date variable types, not integer

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputXPointValueFromRecord = inputData.getData(0);
normTargetXPointValueFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);
denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(NL - Nh);
denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

104

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

targetToPredictPercent = Math.abs((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue*100);

System.out.println("xPoint = " + xPoint +
" denormTargetXPointValue = " + denormTargetXPointValue +
" denormPredictXPointValue = " + denormPredictXPointValue +

targetToPredictPercent = " + targetToPredictPercent);

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredictPercent;

// Populate chart elements

xData.add(denormInputXPointValue);

yDatal.add(denormTargetXPointValue);

yData2.add(denormPredictXPointValue);
} // End for pair loop

// Print the max and average results

System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/intNumberOfRecordsInTestFile;

System.out.println("maxErrorPerc = " + maxGlobalResultDiff);
System.out.println("averErrorPerc = " + averGlobalResultDiff);

// All testing batch files have been processed
Chart.addSeries("Actual", xData, yDatal);
Chart.addSeries("Predicted", xData, yData2);

XYSeries seriesil

XYSeries series2

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Coloxr.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName,

BitmapFormat.JPG, 100);
105

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

System.out.println("End of testing for test records");
} // End of the method

Testing Results

Listing 5-10 shows the testing results.

Listing 5-10. Testing Results

xPoint = 0.20 TargetValue = 0.04000 PredictedValue = 0.03785 targetToPredictDiffPerc = 5.37
xPoint = 0.30 TargetValue = 0.09000 PredictedValue = 0.09008 targetToPredictDiffPerc = 0.09
xPoint = 0.40 TargetValue = 0.16000 PredictedValue = 0.15798 targetToPredictDiffPerc = 1.26
xPoint = 0.70 TargetValue = 0.49000 PredictedValue = 0.48985 targetToPredictDiffPerc = 0.03
xPoint = 0.95 TargetValue = 0.90250 PredictedValue = 0.90208 targetToPredictDiffPerc = 0.05
xPoint = 1.30 TargetValue = 1.69000 PredictedValue = 1.6909 targetToPredictDiffPerc = 0.06
xPoint = 1.60 TargetValue = 2.56000 PredictedValue = 2.55464 targetToPredictDiffPerc = 0.21
xPoint = 1.80 TargetValue = 3.24000 PredictedValue = 3.25083 targetToPredictDiffPerc = 0.33
xPoint = 1.95 TargetValue = 3.80250 PredictedValue = 3.82933 targetToPredictDiffPerc = 0.71

maxErrorPerc = 5.369910680518282
averErrorPerc = 0.8098656579029523

The average error (the percent difference between the actual and predicted values) is
5.37 percent.

The max error (the percent difference between the actual and predicted values) is
0.81 percent. Figure 5-25 shows the chart for the testing results.

106

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

aloix

4500

000 -~

3500

000~
>
= k00—
"
, %
2000
15,00 ——
1000 —
5.00 - < Actual
- Predicted
0.00
| I I 1 | 1 |
200 2% oo 150 400 4 50 $.00 $.50 600

Figure 5-25. Approximated chart at the points where the network was not trained

The noticeable discrepancies between the actual and predicted values are because of
the rough function approximation. You usually can improve the approximation precision
by tinkering with the architecture of the network (number of hidden layers, number of
neurons in layers). However, the main problem here is a small number of points and
correspondingly relatively large distance between points used to train the network. To
get substantially better function approximation results, you can use many more points
(with a much smaller difference between them) to approximate this function.

Should the training data set include many more points (100; 1,000; or even 10,000)
and correspondingly much smaller distances between points (0.01, 0.001, or even
0.0001), the approximation results would be substantially more precise. However, that is
not the goal of this first simple example.

Digging Deeper

Why are so many more points needed for approximating this function? Function
approximation controls the behavior of the approximated function at the points
processed during training. The network learns to make the approximated results closely
match the actual function values at the training points, but it has much less control of the
function behavior between the training points. Consider Figure 5-26.

107

Dy Profl Engr Mr Santosh Kumar

CHAPTER 5 NEURAL NETWORK DEVELOPMENT USING THE JAVA ENCOG FRAMEWORK

F
Approximation of the
L6 Function y = f(x) Function 1
y=f(x) +
|- | \
N
—92 |
0 2 4 6 8 10

Figure 5-26. Original and approximated functions

In Figure 5-26, the approximation function values closely match the original function
values at the training points, but not between points. The errors for testing points are
deliberately exaggerated to make the point clearer. If many more training points are
used, then the testing points will always be much closer to one of the training points, and
the testing results at the testing points will be much closer to the original function value
at those points.

Summary

This chapter described how to develop neural network applications using the Java Encog
framework. You saw a step-by-step approach to coding a neural network application using
Encog. All the examples in the rest of this book use the Encog framework.

108

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6

Neural Network Prediction
Outside the Training
Range

Preparing data for neural network processing is typically the most difficult and time-
consuming task you'll encounter when working with neural networks. In addition to the
enormous volume of data that could easily reach millions and even billions of records,
the main difficulty is in preparing the data in the correct format for the task in question.
In this and the following chapters, I will demonstrate several techniques of data
preparations/transformation.

The goal of this chapter’s example is to show how to bypass the major restriction
for the neural network approximation, which states that predictions should be used
only inside the training interval. This restriction exists for any function approximation
mechanism (not only for approximation by neural networks but also for any type of
approximations such as Taylor series and Newtonian approximation calculus). Getting
function values outside of the training interval is called forecasting or extrapolation
(rather than prediction). Forecasting function values is based on extrapolation, while
the neural network processing mechanism is based on the approximation mechanism.
Getting the function approximation value outside the training interval simply produces
the wrong result. This is one of the important concepts to be aware of.

109
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_6

O Prof Enr:ir M Sanfosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Example 3a: Approximating Periodic Functions
Outside of the Training Range

For this example, you will use the tangent periodic function y = tan(x). Let’s pretend that
you don’t know what type of periodic function is given to you; the function is given to
you by its values at certain points. Table 6-1 shows function values on the interval [0, 1.2].
You will use this data for network training.

Table 6-1. Function Values on the Interval [0, 1.2]

Point x y

0 10

0.12 10.12058
0.24 10.24472
0.36 10.3764
0.48 10.52061
0.6 10.68414
0.72 10.87707
0.84 11.11563
0.96 11.42836
1.08 11.87122
1.2 12.57215

Figure 6-1 shows the chart of the function values on the interval [0, 1.2].

110

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

1260 —
1240 —
1220 =
1200 —
180 —
160 —

§..,.. -
E.., =

1eo —
1080 —
1060 —
1040 —
1020 -

L
000 010 020 030 040 050 060 030 08 090 100 110 120

Day

Figure 6-1. Chart of the function values on the interval [0, 1.2]

Table 6-2 shows function values on the interval [3.141592654, 4.341592654]. You will
use this data for testing the trained network.

Table 6-2. Function Values on the Interval [3.141592654, 4.341592654]

Point x y
3.141593 10
3.261593 10.12058
3.381593 10.24472
3.501593 10.3764
3.621593 10.52061
3.741593 10.68414
3.861593 10.87707
3.981593 11.11563
4101593 11.42836
4221593 11.87122
4.341593 12.57215

111

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Figure 6-2 shows the chart of the function values on the interval [3.141592654,
4.341592654].

Figure 6-2. Chart of the function values on the interval [3.141592654,
4.341592654]

The goal of this example is to approximate the function on the given interval [0, 1.2]
and then use the trained network to predict the function values on the next interval,
which is [3.141592654, 4.341592654].

For Example 3a, you will try to approximate the function in a conventional way, by
using the given data as it is. This data needs to be normalized on the interval [-1, 1].
Table 6-3 shows the normalized training data set.

112

Dr Prof Engr Mr Saniosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Table 6-3. Normalized Training Data Set

Point x y
-0.666666667 -0.5
-0.626666667 -0.43971033
-0.586666667 -0.37764165
-0.546666667 -0.311798575
-0.506666667 -0.23969458
-0.466666667 -0.157931595
-0.426666667 -0.06146605
-0.386666667 0.057816175
-0.346666667 0.214178745
-0.306666667 0.43560867
-0.266666667 0.78607581

Table 6-4 shows the normalized testing data set.

Table 6-4. Normalized Testing Data Set

Point x y
0.380530885 -0.5
0.420530885 -0.43971033
0.460530885 -0.37764165
0.500530885 -0.311798575
0.540530885 -0.23969458
0.580530885 -0.157931595
0.620530885 -0.06146605
0.660530885 0.057816175
0.700530885 0.214178745
0.740530885 0.43560867
0.780530885 0.786075815

113

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Network Architecture for Example 3a

Figure 6-3 shows the network architecture for this example. Typically, the architecture
for a specific project is determined experimentally, by trying many and selecting the one
that produces the best approximation results. The network consists of a single neuron in
the input layer, three hidden layers (each with five neurons), and a single neuron in the
output layer.

Input
Layer

Output
Layer

Hidden Layers

Figure 6-3. Network architecture

Program Code for Example 3a

Listing 6-1 shows the program code.

Listing 6-1. Program Code

// Approximation of the periodic function outside of the training range.
//

// The input is the file consisting of records with two fields:

// - The first field is the xPoint value.

// - The second field is the target function value at that xPoint

I} ssesssmsgmssssmmpcsmssssnssorssasassReEEE SRS NSRS

package sample3a;

114

O Prof Enr:ir M Sanfosh Kumar

import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.

import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

io.BufferedReader;
io.File;
io.FileInputStream;
io.PrintWriter;
io.FileNotFoundException;
io.FileReader;
io.FileWriter;
io.IOException;
io.InputStream;
nio.File.*;
.util.Properties;
.time.YearMonth;
.awt.Color;
.awt.Font;
.io0.BufferedReader;
.text.DateFormat;
.text.ParseException;
.text.SimpleDateFormat;
.time.LocalDate;
.time.Month;
.time.Zoneld;
.util.Arraylist;
.util.Calendar;
.util.Date;
.util.Llist;
.util.Llocale;
.util.Properties;

encog.Encog;
encog.engine.network.activation.ActivationTANH;
encog.engine.network.activation.ActivationRelU;
encog.ml.data.MLData;

encog.ml.data.MLDataPair;
encog.ml.data.MLDataSet;
encog.ml.data.buffer.MemoryDataloader;
encog.ml.data.buffer.codec.CSVDataCODEC;

115

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

public class Sample3a implements ExampleChart<XYChart>
{

static double Nh
static double N1

1;
_1;

// First column
static double maxXPointDh
static double minXPointDl

5.00;
-1.00;

// Second column - target data
static double maxTargetValueDh
static double minTargetValueDl

1]

13.00;
9.00;

116

Dy Profl Engr Mr Santosh Kumar

static
static
static
static
static
static
static
static

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

double doublePointNumber = 0.00;

int intPointNumber = 0;

InputStream input = null;

double[] arrFunctionValue = new double[500];
double inputDiffValue = 0.00;

double predictDiffValue = 0.00;

double targetDiffValue = 0.00;

double valueDifferencePerc = 0.00;

static String strFunctionValuesFileName;

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static
static
static

static

int returnCode = 0;

int numberOfInputNeurons;

int numberOfOutputNeurons;

int numberOfRecordsInFile;

int intNumberOfRecordsInTestFile;
double realTargetValue 3
double realPredictValue s
String functionValuesTrainFileName;
String functionValuesTestFileName;
String trainFileName;

String priceFileName;

String testFileName;

String chartTrainFileName;

String chartTestFileName;

String networkFileName;

int workingMode;

String cvsSplitBy = ",";

double denormTargetDiffPerc;

double denormPredictDiffPerc;

List<Double> xData = new ArrayList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

XYChart Chart;

117

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

@0Override
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.

getAWTColor (ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColoxr(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColoxr(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED, Font.BOLD, 24));
Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setlLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendSeriesLineLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF, Font.ITALIC, 18));
Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.
PLAIN, 11));

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Configuration

118

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

// Train
workingMode = 1;
trainFileName = "C:/My Neural Network Book/Book Examples/Sample3a_Norm_
Tan Train.csv";
unctionValuesTrainFileName =
"C:/My Neural Network Book/Book Examples/Sample3a Tan Calculate
Train.csv";
chartTrainFileName =
"C:/My Neural Network Book/Book Examples/Sample3a XYLine Tan Train Chart";
numberOfRecordsInFile = 12;

// Test the trained network at non-trained points
// workingMode = 2;
// testFileName = "C:/My Neural Network Book/Book Examples/Sample3a
Norm Tan Test.csv";
// functionValuesTestFileName =
"C:/My_Neural Network Book/Book Examples/Sample3a Tan Calculate
Test.csv";
//chartTestFileName =
"C:/My Neural Network Book/Book Examples/Sample3a XYLine Tan Test Chart";
//numberOfRecordsInFile = 12;

// Common configuration

networkFileName =
"C:/My_Neural Network Book/Book Examples/Sample3a_Saved Tan Network
File.csv";

numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

try
{

// Check the working mode to run

if(workingMode == 1)

{

// Train mode
loadFunctionValueTrainFileInMemory();

119

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

File file1
File file2

new File(chartTrainFileName);
new File(networkFileName);

if(file1.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the return code variable

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

} // End the train logic
else

{
// Testing mode.

// Load testing file in memory
loadTestFileInMemory();

File file1 = new File(chartTestFileName);

if(filel.exists())
filel.delete();

loadAndTestNetwork();

}
}
catch (Throwable t)
{
t.printStackTrace();
System.exit(1);
}

120

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

finally

{
Encog.getInstance().shutdown();

}
Encog.getInstance().shutdown();

return Chart;

} // End of the method

// Load CSV to memory.

// @return The loaded dataset.

}{ =====s==sc=z=c=cssesszssossoozs

public static MLDataSet loadCSV2Memory(String filename, int input, int

ideal, boolean headers, CSVFormat format, boolean significance)

{

DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);

MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.

// @param Command line arguments. No arguments are used.
/| ===
public static void main(String[] args)

{
ExampleChart<XYChart> exampleChart = new Sample3a();

XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

121

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

static public int trainValidateSaveNetwork()

{

double functionValue = 0.00;

// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numberOfInputNeurons,numberOfOutputNeurons,
true,CSVFormat.ENGLISH,false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasicLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;
returnCode = 0;

do
{

train.iteration();
System.out.printIn("Epoch #" + epoch + " Error:" + train.getError());

122

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE
epoch++;

if (epoch >= 500 && network.calculateError(trainingSet) > 0.000000061)

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError() > 0.00000006);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");

double sumDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxErrorPerc = 0.00;

int m = -1;

double xPoint Initial = 0.00;

double xPoint Increment = 0.12;

double xPoint = xPoint_Initial - xPoint_Increment;

realTargetValue = 0.00;
realPredictValue = 0.00;

for(MLDataPair pair: trainingSet)
{

m++;
xPoint = xPoint + xPoint Increment;

//if(xPoint > 3.14)
// break;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

123

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

124

XYSeries seriesi
XYSeries series2

// Calculate and print the results
inputDiffvalue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

//De-noxrmalize the values

denormTargetDiffPerc = ((minTargetValueDl - maxTargetValueDh)*
targetDiffValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

denormPredictDiffPerc =((minTargetValueDl - maxTargetValueDh)*
predictDiffValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

valueDifferencePerc =
Math.abs(((denormTargetDiffPerc - denormPredictDiffPerc)/
denormTargetDiffPerc)*100.00);

System.out.println ("xPoint =" + xPoint + " realTargetValue = " +
denormTargetDiffPerc + " realPredictValue = " +
denormPredictDiffPerc + " valueDifferencePerc = " + value

DifferencePerc);
sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

if (valueDifferencePerc > maxErrorPerc & m > 0)
maxErrorPerc = valueDifferencePerc;

xData.add(xPoint);
yData1.add(denormTargetDiffPerc);
yData2.add(denormPredictDiffPerc);

// End for pair loop

Chart.addSeries("Actual data", xData, yData1);
Chart.addSeries("Predict data", xData, yData2);

seriesi.setLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

try

//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println(" ");
System.out.println("maxExrrorPerc = " + maxErrorPerc +

" averNormDifferencePerc = " + averNormDifferencePerc);
returnCode = 0;
return returnCode;

} // End of the method

// This method load and test the trained network at the points not
// used for training.

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

125

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

126

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double sumDifferencePerc = 0.00;
double maxErrorPerc = 0.00;

double maxGlobalResultDiff = 0.00;
double averErrorPerc = 0.00;
double sumGlobalResultDiff = 0.00;
double functionValue;

BufferedReader brs;
BasicNetwork network;
int k1 = 0;

// Process test records
maxGlobalResultDiff = 0.00;
averkErrorPerc = 0.00;
sumGlobalResultDiff = 0.00;

MLDataSet testingSet =

loadCSV2Memory(testFileName, numberOfInputNeurons,numberOfOutput

Neurons,true,CSVFormat.ENGLISH,false);

// Load the saved trained network
network =

(BasicNetwork)EncogDirectoryPersistence.loadObject(new File

(networkFileName));
int 1
int m

- 1; // Index of the current record
..1;

double xPoint Initial = 3.141592654;
double xPoint Increment = 0.12;

double xPoint = xPoint_Initial - xPoint_Increment;

realTargetValue = 0.00;
realPredictValue = 0.00;

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

for (MLDataPair pair: testingSet)
{
M+
xPoint = xPoint + xPoint_Increment;

//if(xPoint > 3.14)
// break;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

// De-normalize the values

denormTargetDiffPerc = ((minTargetValueDl - maxTargetValueDh)*
targetDiffValue - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

denormPredictDiffPerc =((minTargetValueDl - maxTargetValueDh)*
predictDiffValue - Nh*minTargetValueDl + maxTargetValue
Dh*N1)/(N1 - Nh);

valueDifferencePerc =
Math.abs(((denormTargetDiffPerc - denormPredictDiffPerc)/
denormTargetDiffPerc)*100.00);

System.out.println ("xPoint =" + xPoint + " realTargetValue = " +
denormTargetDiffPerc + "
denormPredictDiffPerc +

valueDifferencePerc = " +
valueDifferencePerc);

realPredictValue = " +

sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

127

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

if (valueDifferencePerc > maxErrorPerc && m > 0)
maxErrorPerc = valueDifferencePerc;

xData.add(xPoint);
yDatail.add(denormTargetDiffPerc);
yData2.add(denormPredictDiffPerc);

} // End for pair loop
// Print max and average results

System.out.println(" ");
averErrorPerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println("maxExrrorPerc = " + maxErrorPerc);
System.out.println("averErrorPerc = " + averErrorPerc);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yData1);
Chart.addSeries("Predicted", xData, yData2);

XYSeries series2

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

} // End of the method

128

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

public static void loadFunctionValueTrainFileInMemory()

{

BufferedReader bri = null;

nmn

Stxring line = "";
String cvsSplitBy = ",";
double tempYFunctionValue = 0.00;

try
{

br1 = new BufferedReader(new FileReader(functionValuesTrain
FileName));

int 1

int r

..1;
-2;

while ((line = bri.readlLine()) != null)

{
it++;
I++;
// Skip the header line
if(i > 0)
{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempYFunctionValue = Double.parseDouble(workFields[1]);
arrFunctionValue[r] = tempYFunctionValue;

}
} // end of the while loop

bri.close();

}
catch (IOException ex)

129

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

{

ex.printStackTrace();
System.err.println("Error opening files = " + ex);
System.exit(1);

public static void loadTestFileInMemory()
{

BufferedReader bri = null;

String line = "%;
String cvsSplitBy = ",";
double tempYFunctionValue = 0.00;

try
|

bri = new BufferedReader(new FileReader(functionValuesTestFileName));

int i

_1;
int' T = -2
while ((line = bri.readlLine()) != null)
{
i++;
T++;
// Skip the header line
if(i. » o)

{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempYFunctionValue = Double.parseDouble(workFields[1]);
arrFunctionValue[r] = tempYFunctionValue;

130

Dy Profl Engr Mr Santosh Kumar

}

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

}

} // end of the while loop

bri.close();

}

catch (IOException ex)

{

ex.printStackTrace();

System.err.println("Error opening files
System.exit(1);

}

} // End of the class

=" + ex);

This code represents regular neural network processing and does not need any

explanation.

Listing 6-2 shows the training processing results.

Listing 6-2. Training Processing Results

xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint

maxErrorPerc =

0.00 TargetValue
0.12 TargetValue
0.24 TargetValue
0.36 TargetValue
0.48 TargetValue
0.60 TargetValue
0.72 TargetValue
0.84 TargetValue
0.96 TargetValue
1.08 TargetValue
1.20 TargetValue

10.00000
10.12058
10.24471
10.37640
10.52061
10.68414
10.87707
11.11563
11.42835
11.87121
12.57215

PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue
PredictedValue

0.007121086942321541

averErrorPerc = 0.0034047471040211954

Figure 6-4 shows the chart of the training results.

Dy Profl Engr Mr Santosh Kumar

10.00027 DiffPerc
10.12024 DiffPerc
10.24412 DiffPerc
10.37629 DiffPerc
10.52129 DiffPerc
10.68470 DiffPerc
10.87656 DiffPerc
11.11586 DiffPerc
11.42754 DiffPerc
11.87134 DiffPerc
12.57200 DiffPerc

0.00274
0.00336
0.00580
0.00102
0.00651
0.00530
0.00467
0.00209
0.00712
0.00104
0.00119

131

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

y=1(x)
S

10.80

10.00

* Actual data

0.50 0.60

b 4

0.70

0.80 0.90

1.20

Figure 6-4. Chart of the training results on the interval

Testing the Network

[0, 1.2]

While processing the test data set, you extract the xPoint value (column 1) from the

record, feed this value to the trained network, obtain from the network the predicted

function value, and compare the results against the function values that you happen to

know (see Listing 6-2, column 2).
Listing 6-3 shows the test processing results.

Listing 6-3. Test Processing Results

xPoint = 3.141594 TargetValue
xPoint = 3.261593 TargetValue
xPoint = 3.381593 TargetValue
xPoint = 3.501593 TargetValue
xPoint = 3.621593 TargetValue
xPoint = 3.741593 TargetValue
xPoint = 3.861593 TargetValue
xPoint = 3.981593 TargetValue
xPoint = 4.101593 TargetValue

132

10.00000 PredictedValue =
10.12059 PredictedValue =
10.24471 PredictedValue =
10.37640 Predictedvalue =
10.52061 Predictedvalue =
10.68413 Predictedvalue =
10.87706 Predictedvalue =
11.11563 Predictedvalue =
11.42835 Predictedvalue =

Dy Profl Engr Mr Santosh Kumar

12.71432 DiffPerc = 27.14318
12.71777 DiffPerc = 25.66249
12.72100 DiffPerc = 24.17133
12.72392 DiffPerc = 22.62360
12.72644 DiffPerc = 20.96674
12.72849 DiffPerc = 19.13451
12.73003 DiffPerc = 17.03549
12.73102 DiffPerc = 14.53260
12.73147 DiffPerc = 11.40249

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

xPoint = 4.221593 TargetValue = 11.87121 PredictedValue = 12.73141 DiffPerc = 7.246064
xPoint = 4.341593 TargetValue = 12.57215 PredictedValue = 12.73088 DiffPerc = 1.262565

maxExrrorPerc = 25.662489243649677
averErrorPerc = 15.931756451553364

Figure 6-5 shows the chart of the test processing results on the interval [3.141592654,
4.341592654].

Figure 6-5. Chart of the testing results on the interval [3.141592654, 4.341592654]

Notice how different the predicted chart (top line) looks comparing to the actual
chart (curved line). The large errors of the test processing results (maxErrorPerc = 25.66%
and averErrorPerc > 15.93%), as shown in Listing 6-7, and the chart in Figure 6-5
show that such function approximation is useless. The network returns those values
when it is fed the input xPoints values from the test records that are outside the training
range. By sending to the network such xPoints, you can attempt to extrapolate the
function values rather than approximate them.

133

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Example 3b: Correct Way of Approximating Periodic
Functions Outside the Training Range

In this example, you'll see how (with special data preparation) it is possible for periodic
functions to be correctly approximated outside the network training range. As you will
see later, you can also use this technique for more complex periodic functions and even
some nonperiodic functions.

Preparing the Training Data

As a reminder, this example needs to use the network trained on the interval [0, 1.2] to
predict the function results on the interval [3.141592654 - 4.341592654], which is outside
the training range. You will see here how to sidestep this neural network restriction for
the periodic function. To do this, you will first transform the given function values to a
data set with each record consisting of two fields.

— Field 1 is the difference between xPoint values of the current point
(record) and the first point (record).

— Field 2 is the difference between the function values at the next point
(record) and the current point (record).

Tip When expressing the first field of the record as the difference between xPoint
values instead of just the original xPoint values, you are no longer getting outside
of the training interval even when you try to predict the function values for any
next interval (in this case, [3.141592654 — 4.341592654]). In other words, the
difference between xPoint values on the next interval, which is [3.141592654 —
4.341592654], becomes within the training range.

By constructing the input data set in such way, you essentially teach the network
to learn that when the difference in the function values between the current and first
xPoints is equal to some value “a,” then the difference in function values between the
next and current points must be equal to some value “b.” That allows the network
to predict the next day’s function value by knowing the current day’s function value.

Table 6-5 shows the transform data set.

134

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Table 6-5. Transformed Training Data Set

Point x y

-0.12 9.879420663
0 10

0.12 10.12057934
0.24 10.2447167
0.36 10.37640285
0.48 10.52061084
0.6 10.68413681
0.72 10.8770679
0.84 11.11563235
0.96 11.42835749
1.08 11.87121734
1.2 12.57215162
1.32 13.90334779

You normalize the training data set on the interval [-1,1]. Table 6-6 shows the results.

Table 6-6. Normalized Training Data Set

xDiff yDiff

-0.968 -0.967073056
-0.776 -0.961380224
-0.584 -0.94930216
-0.392 -0.929267216
-0.2 -0.898358448
-0.008 -0.851310256
0.184 -0.77829688
0.376 -0.659639776

(continued)

135

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Table 6-6. (continued)

xDiff yDiff

0.568 -0.45142424
0.76 -0.038505152
0.952 0.969913872

Table 6-7 shows the transformed testing data set.

Table 6-7. Transformed Testing Data Set

136

xPointDiff yDiff
3.021592654 9.879420663
3.141592654 10
3.261592654 10.12057934
3.381592654 10.2447167
3.501592654 10.37640285
3.621592654 10.52061084
3.741592654 10.68413681
3.861592654 10.8770679
3.981592654 11.11563235
4.101592654 11.42835749
4.221592654 11.87121734
4.341592654 12.57215163
4.461592654 13.90334779

Table 6-8 shows the normalized testing data set.

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Table 6-8. Normalized Testing Data Set

xDiff yDiff

-0.968 -0.967073056
-0.776 -0.961380224
-0.584 -0.94930216
-0.392 -0.929267216
-0.2 -0.898358448
-0.008 -0.851310256
0.184 -0.77829688
0.376 -0.659639776
0.568 -0.45142424
0.76 -0.038505136
0.952 0.969913856

You actually don’t need the second column in the test data set for processing. I just
included it in the test data set to be able to compare the predicted values against the
actual values programmatically. Feeding the difference between the xPoint values at the
current and previous points (Field 1 of the currently processed record) to the trained
network, you will get back the predicted difference between the function values at the
next point and the current point. Therefore, the predicted function value at the next
point is equal to the sum of the target function value at the current point (record) and the
network-predicted difference value.

Network Architecture for Example 3b

For this example, you will use a network with the output layer consisting of a single
neuron, three hidden layers (each holding five neurons), and the output layer holding
a single neuron. Again, I came up with this architecture experimentally (by trying and
testing). Figure 6-6 shows the training architecture.

137

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Input
Layer

Output
Layer

Hidden Layers

@
)
)
\
3
)

o a
ESSOE A E o
R RS
,==55§$=E§§nﬂ==1|'¢==f=§§=?§uni=>
O W, 1'."><qn»~<s>
‘.ééiaﬁil;2SSEE§'.4225§:Ljﬁissss‘.

g
‘1
<‘4
1

Figure 6-6. Network architecture for the example

Now you are ready to develop the network processing program and run the training

and testing methods.

Program Code for Example 3b

Listing 6-4 shows the program code.

Listing 6-4. Program Code

//
//
//
/7
//
//
//

Approximation of the periodic function outside of the training range.

The input is the file consisting of records with two fields:

- The first field holds the difference between the function values of the
current and first records.

- The second field holds the difference between the function values of the
next and current records.

package sample3b;
import java.io.BufferedReader;
import java.io.File;

138

O Prof Enr:ir M Sanfosh Kumar

import java.
import java.
import java.
import java.
import java.
import java.
import java.

import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

io.FileInputStream;
io.PrintWriter;
io.FileNotFoundException;
io.FileReader;
io.FileWriter;
io.IOException;
io.InputStream;

.nio.file.*;

.util
.time

.Properties;
.YearMonth;

.awt.Color;
.awt.Font;
.io0.BufferedReader;

.text

Lext.,
fext.
.time.
.time.
.time.
JAtils
.util.
.util.
Jutils

util

STy 0 IS

encog

encog.engine.network.activation.ActivationTANH;
encog.engine.network.activation.ActivationRelU;

encog
encog
encog
encog
encog
encog

.DateFormat;
ParseException;
SimpleDateFormat;
LocalDate;
Month;

Zoneld;
Arraylist;
Calendar;

Date;

Lists:

.Locale;
Properties;

.Encog;

.ml.data.MLData;
.ml.data.MLDataPair;
.ml.data.MLDataSet;

.ml.data.buffer.MemoryDataloader;
.ml.data.buffer.codec.CSVDataCODEC;
.ml.data.buffer.codec.DataSetCODEC;
encog.neural.networks.BasicNetwork;

Dy Profl Engr Mr Santosh Kumar

139

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;
import org.knowm.xchart.XYChartBuilder;
import org.knowm.xchart.XYSeries;
import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

/**

ES

* @author 1262666

i |

public class Sample3b implements ExampleChart<XYChart>
{

static double Nh
static double N1

1;
_1;

// First column
static double maxXPointDh
static double minXPointD1

1:35;
0.10;

// Second column - target data
static double maxTargetValueDh
static double minTargetValueDl

1.35;
0.10;

140

Dy Profl Engr Mr Santosh Kumar

static
static
static
static
static
static
static
static

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

double doublePointNumber = 0.00;

int intPointNumber = 0;

InputStream input = null;

double[] arrFunctionValue = new double[500];
double inputDiffValue = 0.00;

double predictDiffValue = 0.00;

double targetDiffValue = 0.00;

double valueDifferencePerc = 0.00;

static String strFunctionValuesFileName;

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static
static
static

static

int returnCode = 0;

int numberOfInputNeurons;

int numberOfOutputNeurons;

int numberOfRecordsInFile;

int intNumberOfRecordsInTestFile;
double realTargetValue 3
double realPredictValue s
String functionValuesTrainFileName;
String functionValuesTestFileName;
String trainFileName;

String priceFileName;

String testFileName;

String chartTrainFileName;

String chartTestFileName;

String networkFileName;

int workingMode;

String cvsSplitBy = ",";

double denormTargetDiffPerc;

double denormPredictDiffPerc;

List<Double> xData = new ArrayList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

XYChart Chart;

141

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

@0Override
public XYChart getChart()

142

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart

Chart.getStyler().

setPlotBackgroundColor(ChartColor.

getAWTColor (ChartColor.GREY));

Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().

setPlotGridLinesColor(new Color(255, 255, 255));
setChartBackgroundColor(Color.WHITE);
setLegendBackgroundColor(Color.PINK);
setChartFontColor(Color.MAGENTA);

Chart.getStyler().setChartTitleBoxBackgroundColoxr(new Color(0, 222, 0));

Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().

setChartTitleBoxVisible(true);
setChartTitleBoxBorderColor(Colox.BLACK);
setPlotGridLinesVisible(true);
setAxisTickPadding(20);
setAxisTickMarkLength(15);
setPlotMargin(20);
setChartTitleVisible(false);

Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED, Font.BOLD, 24));

Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
Chart.getStyler().
ITALIC, 18));

Chart.getStyler().
PLAIN, 11));

Chart.getStyler().
Chart.getStyler().

// Configuration

setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
setLegendPosition(LegendPosition.InsideSE);
setLegendSeriesLinelength(12);

setAxisTitleFont(new Font(Font.SANS SERIF, Font.

setAxisTickLabelsFont(new Font(Font.SERIF, Font.

setDatePattern("yyyy-MM");
setDecimalPattern("#0.00");

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

// Set the mode of program run
workingMode = 1; // Training mode

if (workingMode == 1)
{

trainFileName = "C:/My Neural Network Book/Book Examples/Sample3b_

Norm Tan Train.csv";

functionValuesTrainFileName =
"C:/My Neural Network Book/Book Examples/Sample3b Tan Calculate
Train.csv";

chartTrainFileName =
"C:/My Neural Network Book/Book Examples/Sample3b XYLine Tan_
Train_Chart";

numberOfRecordsInFile = 12;

}

else
{
// Testing mode
testFileName = "C:/My Neural Network Book/Book Examples/
Sample3b Norm Tan Test.csv";
functionValuesTestFileName =
"C:/My_Neural Network Book/Book Examples/Sample3b Tan Calculate
Test.csv";
chartTestFileName =
"C:/My_Neural Network_ Book/Book Examples/Sample3b _XYLine_Tan_
Test Chart";
numberOfRecordsInFile = 12;

}

// Common configuration

networkFileName =
"C:/My Neural Network Book/Book Examples/Sample3b Saved Tan_
Network File.csv";

numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

143

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

try
{

// Check the working mode to run

if(workingMode == 1)
{

// Train mode
loadFunctionValueTrainFileInMemory();

File file1
File file2

new File(chartTrainFileName);
new File(networkFileName);

if(filel.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the return code variable

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

} // End the train logic
else

{

// Testing mode.

// Load testing file in memory
loadTestFileInMemory();

File filel = new File(chartTestFileName);

if(filel.exists())
filel.delete();

loadAndTestNetwork();

144

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

}
catch (Throwable t)

{
t.printStackTrace();

System.exit(1);

}
finally

{
Encog.getInstance().shutdown();

}
Encog.getInstance().shutdown();

return Chart;

} // End of the method

// Load CSV to memory.
// @return The loaded dataset.
L R e s e e e R s s e s
public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.
// @param Command line arguments. No arguments are used.
// M

145

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

146

public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new Sample3b();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

static public int trainValidateSaveNetwork()

{

double functionValue = 0.00;

// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numbexrOfInputNeurons,numberOfOutputNeurons,
true,CSVFormat.ENGLISH,false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

int epoch = 1;
returnCode = 0;

do

{
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;

if (epoch >= 500 && network.calculateError(trainingSet) > 0.000000061)

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError() > 0.00000006);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");

double sumDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxErrorPerc = 0.00;

int m= -1;

double xPoint Initial = 0.00;

double xPoint Increment = 0.12;

//double xPoint = xPoint Initial - xPoint_Increment;
double xPoint = xPoint Initial;

realTargetValue = 0.00;
realPredictValue = 0.00;

for(MLDataPair pair: trainingSet)
{

m++;

147

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE
xPoint = xPoint + xPoint_Increment;
final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

// De-normalize the values

denormTargetDiffPerc = ((minXPointDl -

maxXPointDh)*targetDiffValue - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormPredictDiffPerc =((minTargetValueDl - maxTargetValueDh)*

predictDiffValue - Nh*minTargetValueDl + maxTarget

ValueDh*N1)/(N1 - Nh);

functionValue = arrFunctionValue[m+1];

realTargetValue = functionValue + denormTargetDiffPerc;
realPredictValue = functionValue + denormPredictDiffPerc;

valueDifferencePerc =
Math.abs(((realTargetValue - realPredictValue)/
realPredictValue)*100.00);

System.out.println ("xPoint =" + xPoint + " realTargetValue = " +
denormTargetDiffPerc + " realPredictValue = " +
denormPredictDiffPerc + " valueDifferencePerc = “ + value

DifferencePerc);
sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

if (valueDifferencePerc > maxErrorPerc && m > 0)
maxExrrorPerc = valueDifferencePerc;

148

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

xData.add(xPoint);
yData1.add(denormTargetDiffPerc);
yData2.add(denormPredictDiffPerc);

} // End for pair loop

Chart.addSeries("Actual data", xData, yDatai);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesi
XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

try
{

//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);

}

// Finally, save this trained network
EncogDirectoryPersistence. saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println(" ");
System.out.println("maxExrorPerc = " + maxErrorPerc +

" averNormDifferencePerc = " + averNormDifferencePerc);
returnCode = 0;
return returnCode;

// End of the method
149

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

// This method load and test the trained network at the points not
// used for training.

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double sumDifferencePerc = 0.00;
double maxExrrorPerc = 0.00;

double maxGlobalResultDiff = 0.00;
double averErrorPerc = 0.00;
double sumGlobalResultDiff = 0.00;
double functionValue;

BufferedReader br4;
BasicNetwork network;
int k1 = 0;

// Process test records
maxGlobalResultDiff = 0.00;
averErrorPerc = 0.00;
sumGlobalResultDiff = 0.00;

MLDataSet testingSet =
loadCSV2Memory(testFileName, numberOfInputNeurons, numberOfOutput
Neurons,true,CSVFormat.ENGLISH, false);

int 1 = - 1; // Index of the current record

int m = -1;

double xPoint Initial = 3.141592654;
double xPoint Increment = 0.12;
double xPoint = xPoint Initial;

150

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

realTargetValue = 0.00;
realPredictValue = 0.00;

for (MLDataPair pair: testingSet)
{
m++;
xPoint = xPoint + xPoint Increment;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

// De-normalize the values

denormTargetDiffPerc = ((minXPointDl -

maxXPointDh)*targetDiffValue - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormPredictDiffPerc =((minTargetValueDl - maxTargetValueDh)

*predictDiffValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/

(N1 - Nh);

functionValue = arrFunctionValue[m+1];

realTargetValue = functionValue + denormTargetDiffPerc;
realPredictValue = functionValue + denormPredictDiffPerc;

valueDifferencePerc =
Math.abs(((realTargetValue - realPredictValue)/realPredictValue)*100.00);

realTargetValue = " +
realPredictValue = " + realPredictValue +

valueDifferencePerc = " + valueDifferencePerc);

System.out.println ("xPoint = " + xPoint +
realTargetValue + "

sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

151

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

if (valueDifferencePerc > maxErrorPerc && m > 0)
maxErrorPerc = valueDifferencePerc;

xData.add(xPoint);
yDatai.add(realTargetValue);
yData2.add(realPredictValue);

} // End for pair loop
// Print max and average results

System.out.println(" ");
averErrorPerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println("maxExrrorPerc = " + maxErrorPerc);
System.out.println("averErrorPerc = " + averErrorPerc);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yData1);
Chart.addSeries("Predicted", xData, yData2);

XYSeries series2

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

} // End of the method

152

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

public static void loadFunctionValueTrainFileInMemory()

{

BufferedReader bri = null;

nmn

Stxring line = "";
String cvsSplitBy = ",";
double tempYFunctionValue = 0.00;

try
{
brl = new BufferedReader(new FileReader(functionValuesTrainFileName));
int 1 = -13
int r = -2;

while ((line = bri.readlLine()) != null)
{

i++;
T++;
// Skip the header line
if(i > 0)
{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempYFunctionValue = Double.parseDouble(workFields[1]);
arrFunctionValue[r] = tempYFunctionValue;

}
} // end of the while loop

bri.close();

}
catch (IOException ex)

{

153

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

ex.printStackTrace();
System.err.println("Error opening files = " + ex);
System.exit(1);

public static void loadTestFileInMemory()
{

BufferedReader bri = null;

String line = "";

String cvsSplitBy = ",";
double tempYFunctionValue = 0.00;

try
{
bri = new BufferedReader(new FileReader(functionValuesTestFileName));
int: 1 = =13
int r = -2;

while ((1line = bri.readlLine()) != null)
{
i++;
T++;

// Skip the header line
if(i » 0)
{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempYFunctionValue = Double.parseDouble(workFields[1]);
arrFunctionValue[r] = tempYFunctionValue;

}
} // end of the while loop
154

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

bri.close();

}
catch (IOException ex)

{

ex.printStackTrace();
System.err.println("Error opening files = " + ex);
System.exit(1);

}

}
} // End of the class

As usual, some miscellaneous statements are present at the top of the program.
They are required by the XChart package. The program begins with some initialization
imports and code required by XCharts (see Listing 6-5).

Listing 6-5. Calling the Training Method in a Loop
returnCode = 0; // Clear the error Code

do
{
returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

This logic calls the training method and then checks for the returnCode value. If
the returnCode field is not zero, the training method is called again in a loop. Each time
the method is called, the initial weight/bias parameters are assigned different random
values, which helps in selecting their best values when the method is repeatedly called in
aloop.

Inside the called method, the logic checks for the error value after 500 iterations.

If the network-calculated error is still larger than the error limit, the method exits with
a returnCode value of 1. And, as you just saw, the method will be called again. Finally,
when the calculated error clears the error limit, the method exits with a returnCode
value of 0 and is no longer called again. You select the error limit value experimentally,
making it difficult for the network to clear the error code limit but still making sure that
after enough iterations the error will pass the error limit.

155

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

The next code fragment (Listing 6-6) shows the beginning of the training method. It
loads the training data set in memory and creates the neural network consisting of the
input layer (with a single neuron), three hidden layers (each with five neurons), and the
output layer (with a single neuron). Then, you train the network using the most efficient
ResilientPropagation value as the backpropagation method.

Listing 6-6. Loading the Training Data Set and Building and Training the Network

// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory(trainFileName,numberOfInputNeurons, numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer (seven hidden layers are created

network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

That follows by the fragment that trains the network. You train the network by
looping over epochs. On each iteration you check whether the calculated error is less
than the established error limit (in this case, 0.00000006). When the network error
becomes less than the error limit, you exit the loop. The network is trained with the
required precision, so you save the trained network on disk.

156

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE
int epoch = 1;
returnCode = 0;

do

train.iteration();

System.out.println("Epoch #" + epoch + " Error:" + train.getExrroxr());

epoch++;

if (epoch >= 10000 8& network.calculateError(trainingSet) > 0.000000061)
{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError()0.00000006);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

Notice the logic shown in Listing 6-7 that checks whether the network error became
less than the error limit.

Listing 6-7. Checking the Network Error

if (epoch >= 10000 && network.calculateError(trainingSet) > 0.00000006)
{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

This code checks whether after 500 iterations the network error is still not less than
the error limit. If that is the case, the returnCode value is set to 1, and you exit from the
training method, returning to the point where the training method is called in a loop.
There, it will call the training method again with a new random set of weights/bias

157

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

parameters. Without that code, the looping would continue indefinitely if the calculated
network error is unable to clear the error limit with the randomly selected set of the
initial weights/bias parameters.

There are two APIs that can check the calculated network error. The results differ
slightly depending on which method is used.

— train.getError(): The error is calculated before the training is applied.

— network.CalculateErrox(): The error is calculated after the training is applied.

The next code fragment (shown in Listing 6-8) loops over the pair data set. The
xPoint in the loop is set to be on the interval [0, 1.2]. For each record it retrieves the
input, actual, and predicted values; denormalizes them; and by having the function
value calculates the realTargetValue and realPredictValue values, adding them to the
chart data (along with the corresponding xPoint value). It also calculates the maximum
and average value difference percent for all records. All this data is printed as the training
log. Finally, the trained network and the chartimage files are saved on disk. Notice that
the return code is set to zero at that point, before you return from the training method, so
the method will no longer be called again.

Listing 6-8. Looping Over the Pair Data Set

for(MLDataPair pair: trainingSet)

{
M++;
xPoint = xPoint + xPoint_Increment;
final MLData output = network.compute(pair.getInput());
MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);
// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);
158

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

// De-normalize the values
denormTargetDiffPerc = ((minXPointDl - maxXPointDh)*targetDiffValue -
Nh*minXPointDl + maxXPointDh*N1)/(N1 - Nh);

denormPredictDiffPerc =((minTargetValueDl - maxTargetValueDh)
*predictDiffVvalue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

functionValue = arrFunctionValue[m];

realTargetValue = functionValue + targetDiffValue;
realPredictValue = functionValue + predictDiffValue;

valueDifferencePerc =
Math.abs(((realTargetValue - realPredictValue)/
realPredictValue)*100.00);

System.out.println ("xPoint = " + xPoint + " realTargetValue = " +
realTargetValue +

realPredictValue = " + realPredictValue);
sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

if (valueDifferencePerc > maxDifferencePerc)
maxDifferencePerc = valueDifferencePerc;

xData.add(xPoint);
yData1l.add(realTargetValue);
yData2.add(realPredictValue);

// End for pair loop

XYSeries seriesi
XYSeries series2

Chart.addSeries("Actual data", xData, yDatal);
Chart.addSeries("Predict data", xData, yData2);

seriesl.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

159

Dy Profl Engr Mr Santosh Kumar

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

try
{

//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{
ex.printStackTrace();
System.exit(3);

}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println(" ");
System.out.println("maxDifferencePerc = " + maxDifferencePerc +

averNormDifferencePerc = " + averNormDifferencePerc);
returnCode = 0;
return returnCode;

} // End of the method

The test method has a similar processing logic with the exception of building and
training the network. Instead of building and training the network, it loads the previously
saved trained network in memory. It also loads the test data set in memory. By looping
over the pair data set, it gets the input, target, and predicted values for each record. The
xPoint value in the loop is taken from the interval [3.141592654, 4.341592654].

Training Results for Example 3b

Listing 6-9 shows the training results.

160

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Listing 6-9. Training Results

xPoint = 0.12 TargetValue = 0.12058 PredictedValue = 0.12072 DiffPerc
xPoint = 0.24 TargetValue = 0.12414 PredictedValue = 0.12427 DiffPerc
xPoint = 0.36 TargetValue = 0.13169 PredictedValue = 0.13157 DiffPerc
xPoint = 0.48 TargetValue = 0.14421 PredictedValue = 0.14410 DiffPerc
xPoint = 0.60 TargetValue = 0.16353 Predictedvalue = 0.16352 DiffPerc
xPoint = 0.72 TargetValue = 0.19293 PredictedValue = 0.19326 DiffPerc
xPoint = 0.84 TargetValue = 0.23856 PredictedValue = 0.23842 DiffPerc
xPoint = 0.96 TargetValue = 0.31273 PredictedValue = 0.31258 DiffPerc
xPoint = 1.08 TargetValue = 0.44286 PredictedValue = 0.44296 DiffPerc
xPoint = 1.20 TargetValue = 0.70093 PredictedValue = 0.70088 DiffPerc
xPoint = 1.32 TargetValue = 1.33119 PredictedValue = 1.33123 DiffPerc

maxErrorPerc = 0.0030734810314331077
averErrorPerc = 9.929718215067468E-4

= 0.00143
= 0.00135
= 9.6467E-4
= 0.00100
= 5.31138E-5
= 0.00307
0.00128
0.00128
= 8.16305E-4
4.05989E-4
2.74089E-4

Figure 6-7 shows the chart of the actual function values versus the validation results.

y=1(x)
E E £ & B
|

e
o
|

Figure 6-7. Chart of the training/validation results

As shown in Figure 6-7, both charts practically overlap.

Dr Prof Engr Mr Saniosh Kumar

161

CHAPTER 6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

Testing Results for Example 3b

Listing 6-10 shows the testing results on the interval [3.141592654, 4.341592654].

Listing 6-10. Testing Results on the Interval [3.141592654, 4.341592654]

xPoint = 3.26159 TargetValue
xPoint = 3.38159 TargetValue
xPoint = 3.50159 TargetValue
xPoint = 3.62159 TargetValue
xPoint = 3.74159 TargetValue
xPoint = 3.86159 TargetValue
xPoint = 3.98159 TargetValue
xPoint = 4.10159 TargetValue
xPoint = 4.22159 TargetValue
xPoint = 4.34159 TargetValue
xPoint = 4.46159 TargetValue

10.12058 PredictedValue
10.24472 PredictedValue
10.37640 PredictedValue
10.52061 PredictedValue
10.68414 PredictedValue
10.87707 PredictedValue
11.11563 PredictedvValue
11.42836 PredictedValue
11.87122 PredictedValue
12.57215 PredictedValue
13.90335 PredictedValue

maxErrorPerc = 0.003073481240844822
averErrorPerc = 9.929844994337172E-4

]

10.12072 DiffPerc
10.24485 DiffPerc
10.37630 DiffPerc
10.52050 DiffPerc
10.68413 DiffPerc
10.87740 DiffPerc
11.11549 DiffPerc
11.42821 DiffPerc
11.87131 DiffPerc
12.57210 DiffPerc
13.90338 DiffPerc

= 0.00143
= 0.00135
= 9.64667E-4
= 0.00100
5.31136E-5
= 0.00307
= 0.00127
= 0.00128
= 8.16306E-4
= 4.06070E-4
2.74161E-4

Figure 6-8 shows the chart of the testing results (actual function values versus the
predicted function values) on the interval [3.141592654, 9.424777961].

162

Dy Profl Engr Mr Santosh Kumar

CHAPTER6 NEURAL NETWORK PREDICTION OUTSIDE THE TRAINING RANGE

330 340 350 360 370 3150 3.90 4.00 410 420 430 440 4.50

Figure 6-8. Chart of the testing results

Both actual and predicted charts practically overlap.

Summary

Again, neural networks are the universal function approximation mechanism. That means
that once you have approximated the function on some interval, you can use such a trained
neural network to predict the function values at any point within the training interval.
However, you cannot use such a trained network for predicting the function values outside
the training range. A neural network is not a function extrapolation mechanism.

This chapter explained how, for a certain class of functions (in this case, periodic
functions), itis possible get the predicted data outside the training range. You will
continue exploring this concept in the next chapter.

163

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 7

Processing Complex
Periodic Functions

This chapter continues the discussion of how to process periodic functions, concentrating
on more complex periodic functions.

Example 4: Approximation of a Complex Periodic
Function

Let’s take a look at the function chart shown in Figure 7-1. The function represents some
experimental data measured in days (x is the consecutive days of the experiment). This is
a periodic function with a period equal to 50 days.

280.00 —

260.00 —

240,00 —

220.00 —

200,00 —

y=f(day)

180,00 —

160.00 —

140.00 -

120,00 —

100.00 —

I T T T Toays | T T T I T

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90,00 100,00

Figure 7-1. Chart of the periodic function at two intervals: 1-50 and 51-100 days
165

© Igor Livshin 2019
L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_7

Dy Pl Erlr:;r M Saniosh Kurmar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Table 7-1 shows the function values for two periods (1-50 and 50-100 days).

Table 7-1. Function Values at Two Periods

Day Function Value (Period 1) Day Function Value (Period 2)
1 100 51 103
2 103 52 108
3 108 53 115
4 115 54 130
5 130 55 145
6 145 56 157
7 157 57 165
8 165 58 181
9 181 59 198
10 198 60 225
11 225 61 232
12 232 62 236
13 236 63 230
14 230 64 220
15 220 65 207
16 207 66 190
17 190 67 180
18 180 68 170
19 170 69 160
20 160 70 150
21 150 71 140
22 140 72 141
23 141 7 150
24 150 74 160
25 160 75 180
(continued)

166

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Table 7-1. (continued)

Day Function Value (Period 1) Day Function Value (Period 2)
26 180 76 220
27 220 77 240
28 240 78 260
29 260 79 265
30 265 80 270
31 270 81 272
32 272 82 273
33 273 83 269
34 269 84 267
35 267 85 265
36 265 86 254
37 254 87 240
38 240 88 225
39 225 89 210
40 210 90 201
M 201 91 195
42 195 92 185
43 185 93 175
44 175 94 165
45 165 95 150
46 150 96 133
47 133 97 121
48 121 98 110
49 110 99 100
50 100 100 103

167

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Data Preparation

For this example, you will train the neural network using the function values at the first
interval and then test the network by getting the network-predicted function values at
the second interval. Like the previous example, to be able to determine the function
approximation results outside the training range, we would use the difference between
xPoint values and the difference between the function values instead of the given xPoints
and function values. However, in this example, we will use the difference between xPoint
values between the current and previous points as field 1 and the difference between the
function values between the next and current points as field 2.

With such settings in the input file, we will teach the network to learn that when the
difference between the xPoint values is equal to some value “a,” then the difference in
function values between the next day and the current day must be equal to some value
“b” This allows the network to predict the next day’s function value by knowing the
current day’s (record’s) function value.

During the test, we will calculate the function’s next-day value in the following
way. By being at point x = 50, you want to calculate the predicted function value at the
next point, x = 51. Feeding the difference between the xPoint values at the current and
previous points (field 1) to the trained network, we will get back the predicted difference
between the function values at the next and current points. Therefore, the predicted
function value at the next point is equal to the sum of the actual function value at the
current point and the predicted value difference obtained from the trained network.

However, this will not work for this example, simply because many parts of the chart
may have the same difference and direction in function values between the current
and previous days. It will confuse the neural network learning process when it tries to
determine to which part of the chart such a point belongs to (see Figure 7-2).

168

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

280.00

240.00

220.00

180.00

y=H(day)

160.00

140.00

120.00

200.00 -

260.00 -

—

100.00 -

Points

v

|
0.00

|
10.00

I I " pays |

20,00 30.00 40.00 50.00

I
60.00

|
70.00

|

80.00

|

90.00

v

|
|

100.00

Figure 7-2. Confusing points on the function chart

Reflecting Function Topology in the Data

For this example, you need to use an additional trick. You will include the function

topology in the data to help the network distinguish between confusing points.

Specifically, your training file will use sliding windows as the input records.

Each sliding window record includes the input function value differences (between

the current and previous days) of the ten previous records. The function values for the
ten previous days are included in the sliding window because ten days is sufficient to

make the confusing records distinguishable. The target function value of the sliding

window is the target function value difference (between the next and current days) of the

original record 11.

You are building the sliding window record that consists of ten fields that contain

the function values for the ten previous days, because ten days is sufficient to distinguish

confusing points on the chart. However, more days can be included in the record
(say, 12 days).

Dy Profl Engr Mr Santosh Kumar

169

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Essentially, by using such a record format, you teach the network to learn the
following conditions. If the difference in function values for the ten previous records
isequal to al, a2, a3, a4, a5, a6, a7, a8, a9, and al0, then the difference in the next
day’s function value and the current day’s function value should be equal to the target
function value of the next record (record 11). Figure 7-3 shows the visual example of
constructing a sliding window record.

Sliding Window Record

1 2 3 4 5 6 7 8 S 10
3

I\UE
Each box represents the @X’W:’

difference between the target MY
values of the original current and B
previous records I, ,5:

&, This box rep the dift
ST between the target value of the next
record 11 and the current record 10

Original Records

Figure 7-3. Constructing the sliding window record

Table 7-2 shows the sliding window training data set. Each sliding window (record)
includes ten fields that come from the previous ten days plus one extra field with the
expected value to predict.

170

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Table 7-2. Sliding Windows Data Set on the Interval [1, 50]

Sliding Windows
-9 -6 -10 -10 -10 -15 -17 -12 -1 -10 3
-6 -10 -10 -10 -15 -17 -12 -1 -10 3 5
-10 -10 -10 -15 -17 -12 -1 -10 3 3 7
-10 -10 -15 -17 -12 -11 -10 3 3 7 i
-10 -15 -17 -12 -11 -10 3 3 7 15 15

-15 -17 -12 -1 -10 3 3 7 15 15 12
-17 -12 -11 -10 3 3 7 15 15 12 8
-12 -1 -10 3 3 7 15 15 12 8 16
-1 -10 3 3 7 15 15 12 8 16 17
-10 3 3 7 15 15 12 8 16 17 27
3 3 7 15 15 12 8 16 17 27 7
3 7 15 15 12 8 16 17 27 7 4
7 15 15 12 8 16 17 27 7 4 -6
15 15 12 8 16 17 27 7 4 -6 -10
15 12 8 16 17 27 7 4 -6 -10 -13
12 8 16 17 27 7 4 -6 -10 -13 -17
8 16 12 27 7 4 -6 -10 -13 -17 -10
16 17 27 T 4 -6 -10 -13 -17 -10 -10
17 27 i 4 -6 -10 <13 17 -10 -10 -10
27 7 4 -6 -10 -13 -17 -10 -10 -10 -10
7 4 -6 -10 -13 -17 -10 -10 -10 -10 -10
4 -6 -10 -13 -17 -10 -10 -10 -10 -10 1
-6 -10 -13 -17 -10 -10 -10 -10 -10 1 9
-10 -13 -17 -10 -10 -10 -10 -10 1 9 10
-13 -17 -10 -10 -10 -10 -10 1 9 10 20
-17 -10 -10 -10 -10 -10 1 9 10 20 40
(continued)

171

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Table 7-2. (continued)

Sliding Windows

-10 -10 -10 -10 -10 1 9 10 20 40 20

-10 -10 -10 -10 1 9 10 20 40 20 20
-10 -10 -10 1 9 10 20 40 20 20 5
-10 -10 1 9 10 20 40 20 20 5 5
-10 1 9 10 20 40 20 20 5 5 2

1 9 10 20 40 20 20 5 5 2 1

9 10 20 40 20 20 5 5 2 1 -4
10 20 40 20 20 5 5 2 1 -4 =2
20 40 20 20 5 5 2 1 -4 -2 -2
40 20 20 5 5 2 1 -4 -2 -2 -11
20 20 9 5 2 1 -4 -2 -2 -11 -14
20 5 5 2 1 -4 -2 -2 -11 -14 -15
5 5 2 1 -4 2 2 =[] -14 =15 -15
5 2 1 -4 -2 2 -11 -14 15 -15 -8
2 1 -4 -2 -2 -11 -14 -15 -15 -9 -6
1 -4 -2 -2 -11 -14 -15 -15 -9 -6 -10

-15 =9 -6 -10 -10 -10 18 17 -12 -11 -10
-8 -6 -10 -10 -10 -15 17 -12 -1 -10 3

This data set needs to be normalized on the interval [-1.1]. Figure 7-4 shows the
fragment of the normalized sliding windows data set. The 11th field of each record holds
the prediction value. Table 7-3 shows the normalized training data set.

172

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

(panurjuoJ)

6ev1L0-
6¢v1L0-
6¢v16°0-
80-

6V 1L 0-
90-
6¢v1E0-
L58¢¢'0-
LS8¢ve0
EvLLS00
1258200
¢0-
12580°0-
0

0
L58¢¢0-
125820~
98¢¥E 0-

6ev1L0-
6¢v16°0-
80-

6V 1L 0-
90-
6¢v1E0-
L58¢¢°0-
L58¢ve0
EvLL60°0
1258200
¢0-
12G80°0-
0

0
158¢¢°0-
98¢re 0-
98ere 0-
6¢v 1L 0-

6ey16°0-
80-
6¢V1L0-
90-

6V IE0-
158¢¢0-
L58¢vE0
EvLLG0°0
1268200
¢0-
12G80°0-
0

0
L58¢¢ 0~
98¢ere 0-
98eve 0-
6¢v1L0-
98¢v.L0-

80-
6¢vEL0-
90
6¢v1E0-
158¢¢0-
L58¢evE0
EVLLS0°0
1258200
¢0-
12580°0-
0

0
158¢¢ 0-
98¢vE0-
98¢ve 0-
6¢v1L0-
98¢v.L0-
EVILLO-

6¢r1L0-
90-
6¢vIE0-
L58¢¢ 0-
L58eve0
EVLLG0°0
1258200
¢0-
125800~
0

0
168220~
98¢ve0-
98¢eve0-
6CvEL0-
98¢v.L0-
evLLL0-
6¢v16°0-

90-
6¢v1E0-
L58¢¢0-
L58e¥E0
EvLLS00
1258200

¢0-

12580°0-

0

0
£58¢¢°0-
982v€ 0-
98¢ve0-
6¢v1L0-
98¢r.L0-
evLLLO-
6¢v16°0-
7125870~

6y 1LE0-
L58¢¢0-
L58¢vE0
EvLLG0°0
1258200
¢0-
12580°0-
0

0
L58¢¢ 0-
98¢vE0-
98eve 0-
6¢v1L0-
98¢y 0-
EVLLLO-
6¢v16°0-
712580~
6V 1L 0-

1G8¢¢ 0~
LS8¢evE0
EVLLS00
1258200
¢0-
12G80°0-
0

0
158¢¢°0-
98¢ere 0-
98¢ere 0-
6¢v1L0-
98¢ 0-
EVLLLO-
6¢v16°0-
712580~
6V 1L0-
6V 1L 0-

L58¢vE0
EV1L50°0
1258200
¢0-
125800~
0

0
L58¢¢'0-
98¢evE0-
98¢evE0-
6¢v1L0-
98¢y 0-
EvLLLO-
6¢v16°0-
714G8°0-
6V 1L0-
6V 1L0-
6¢v1L0-

€¥1280°0
1258200
¢0-
12580°0-
0

0
£58¢¢'0-
98¢ve 0-
98¢eve 0-
6V 1L0-
98¢y 0-
EVLLLO-
6¢v16°0-
71258°0-
6V 1L 0-
6V 1L0-
6V 1L0-
90-

1268200
¢0-
12580°0-
0

0
L58¢¢0-
98¢eve0-
98¢ve 0-
6y 1L 0-
98¢ 0-
EvLLLO-
6¢v16°0-
712580~
6cv1L0-
6V 1L 0-
6V 1L 0-
90-
12589°0-

smopuip buipyis pazijeurion

19§ VIV SUIUIDA], PaZIJDULION °€-2 2]qD,

173

osh Kumar

Dy Profl Engr Mr San

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

98¢y 0-
12G8¥°0-
LS80~
98¢rS0-

70~
EvLLEO-
1£682°0-
1£682°0-
L58¢r10
158¢v1°0
98¢ev1L0
L58¢v 10
98¢y 10~
EvLLLO-

v0-
6ev1L0-
6V L0~
6ev1L0-

LLG8Y°0-
1LG8Y°0-
98¢ 0-

v0-
EvLLEO-
1£582°0-
1£G82°0-
L58er1°0
LS8¢v10
98ev1L0
1G8¢¥1°0
98¢y 0-
EvLLLO-

v0-
6ev1L0-
6V L0~
6V 1L 0-
6V 1L 0-

125810~
98¢5 0-
v0-
EvLLEO-
1£982°0-
125820~
LS8e1°0
L58¢v1°0
98erLL0
258210
982y 1°0-
EvLLLO-
v0-

6V 1L 0-
6ev1L0-
6V 1L 0-
6V 1L 0-
6V 1L0-

98¢r40-
v0-
EvLLEO-
125820~
1258270~
L58¢v1°0
LG8¢v 10
982v1L0
258210
98¢ey1°0-
evLLLO-
v'0-

62V 1L 0-
6V L0~
6¢v1L0-
6eVEL0-
6L 0-
6¢v16°0-

70-
EVLLEO-
126820~
125820~

L58¢v1°0
L88¢v 10
98ev1L0
2482y 10
98¢y 1 0-
A4VANI

v0-
6¢v1L0-
62vLL0-
6V L0~
6ev1L0-
6¢vL0-
6¢v16°0-

8'0-

evLLE0-
1298¢°0-
126820~
L58¢v1°0
LS8ev1°0
98¢y1L0
LS8e 10
9821 0-
EvLLLO-

v0-
62vLL0-
6ev1L0-
6¢v1L0-
6V 1L 0-
6¢v1L0-
6¢v160-

80-
6¢v1L0-

125820~
126820~
L58¢v1°0
LS8¢¥10
98ev1L0
L58ev10
98ev 1 0-
EvLLLO-

70-
6ev1L0-
6¢vLL0-
6ev1L0-
62y, 0-
6V 1L 0-
6¢y16°0-

80-
6CVIL0-

90-

126820~
LS8y 10
L58ev1°0
98¢v1L0
L58ev10
98¢v 1 0-
EvLLLO-

v0-
6V 1L 0-
6¢v1L0-
62vLL0-
6¢r120-
62vLL0-
6V 16°0-

80-
6¢vIL0-

90~
6cv1E0-

L58¢r10
L58¢v10
9821, 0
L58ev10
98¢y 1°0-
EvLLLO-

v0-
62vLL0-
6V L0
62viLL0-
62vLL0-
6¢v1L0-
6¢v16°0-

80-
6¢v1L0-

90-
6¢v1E0-
L58¢¢0-

158¢v10
98er1L0
L88¢v10
98ey 1 0-
evLLLO-

v0-
6CVIL0-
62vLL0-
6¢vEL0-
62V1L0-
6vLL0-
6¢v16°0-

80-
6V L 0-

90-
6¢v1E0-
L58¢¢0-
LS8evE0

98ev1LL0
LG8¢v10
98¢y 1 0-
evLLLO-

v0-
6V L0
6¢V1IL0-
6vLL0-
6SVLL0-
6¢vLL0-
6¢v16°0-

80-
62y 1.0

90"
6¢v1E0-
158¢¢0-
LS8evE0
EVLLS00

smopui Buipys pazijewson

(ponunuod) g-£ 21qvi

174

osh Kumar

Dy Profl Engr Mr San

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

98¢re 0-
6y 1L 0-
98¢ev.L0-
EvLLLO-
6¢y16°0-
v1258°0-
6y 1L 0-
6V 1L0-
6V IL0-

90-
1/989°0-
v1298°0-
v1298°0-
158280~

6V 1L 0-
98¢0~
EvLLLO-
621670
v1LS8°0-
6y 1L 0-
6cv1L0-
6ev1L0-

90
1£589°0-
v1298°0-
712980~
158¢8°0-
982/, 0-

98¢v.°0-
EvLLLO-
6¢v16°0-
7125980~
6¢v1L0-
6V 1L 0-
6ev1L0-

90
125890~
v1.2598°0-
v12498°0-
L58¢8°0-
98¢ 0-
126810~

EvLLLO-
6y 16°0-
v12G8°0-
6ev1L0-
6ev1L0-
6y 1L 0-

90-
125890~
712580~
v1.2598°0-
158¢8°0-
98¢rL°0-
129810~
12G8Y°0-

6¢v16°0-
v12G8°0-
62V 1L 0-
6y 1L 0-
6ev1L0-

90-
129890~
v1298°0-
v1LS8°0-
158¢8°0-
98¢v.°0-
125810~
1258Y°0-
98¢2¥5°0-

v1258°0-
6¢v1L0-
62vLL0-
6¢v1L0-

90-
126890~
712580~
v1258°0-
L58¢8°0-
98¢v.L0-
1/G8Y°0-
1/98Y°0-
98¢2vS°0-

v0-

62V LL0-
6v1L0-
62vLL0-

90-
129890~
712580~
v1258°0-
L58¢8°0-
98¢ L 0-
1LG8Y°0-
1/G8Y°0-
98¢vS0-

v0-
evLLEO-

6ev1L0-
6ev1L0-

90-
1/589°0-
v12G8°0-
v1258°0-
L58¢8°0-
98¢v.L0-
1298Y°0-
129810~
982v50-

v0-
EvLLEO-
126820~

6y 1L 0-

90-
125890~
712980~
v1LG80-
158¢8°0-
98¢y 0-
1258Y°0-
1258V °0-
982vS0-

v0-
EvLLED-
126820~
126820~

90
12589°0-
712980~
712980~
£58¢8°0-
98¢v.L0-
12G8¥°0-
LG8V 0-
98¢vS0-

v0-
evLLED-
125820~
125820~
2S8¢v1°0

12589°0-
712980~
712980~
£58¢8°0-
98¢ 0-
/S8 °0-
1.G8Y°0-
98evS0-

v0-
evLLEO-
125820~
125820~
2G8¢ev1°0
268210

smopui Buipig pazijeusion

175

osh Kumar

Dy Profl Engr Mr San

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Network Architecture

You will use the network (shown in Figure 7-5) that consists of the input layer (holding ten
neurons), four hidden layers (each holding 13 neurons), and the output layer (holding a
single neuron). The reasoning for choosing this architecture was discussed earlier.

Input
Layer

Output
Layer

:} »fj;?. “\'t‘\

-

(] ,‘~

8 4 . : ‘: ; ‘
\ £3,80 :'. J 3
»'r:y;;,:- QI
\ gm i '§ \ \\\‘ ’/ 72 ’?q ‘h \ \ {‘%)
7 ,1,3 ik g‘g
9\\ .' ' w4
'/(0 s\ ,//3' ‘;{ § ,;,', :
Z /J- ‘:‘\ .)
l" ’: o %A 3 y .

B 7 OSSN TS

\.

;s —_—— . \

77 7 SN = AN
,2:‘"//' -\;_/\-(:\»1}_ ' ” ;>’~_:>(\"\',\§._
Zoa .. & S N\

Figure 7-4. Network architecture

Each record in the sliding window training data set contains ten input fields and one
output field. You are ready to develop the neural network processing program.

Program Code

Listing 7-1 shows the program code.

176

Dr Prof Engr Mr Saniosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Listing 7-1. Program Code

// Approximation of the complex periodic function. The input is a training

// or testing file with the records built as sliding windows. Each sliding

// window record contains 11 fields.

// The first 10 fields are the field1l values from the original 10 records plus

// the field2 value from the next record, which is actually the difference
between the target values of the next original record (record 11) and

// record 10.

package sample4;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.localDate;
import java.time.Month;

import java.time.Zoneld;

import java.util.Arraylist;
import java.util.Calendar;

L77

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

import java.util.Date;
import java.util.list;
import java.util.locale;
import java.util.Properties;

import org.encog.Encog;

import org.encog.engine.network.activation.ActivationTANH;
import org.encog.engine.network.activation.ActivationRelLU;
import org.encog.ml.data.MLData;

import org.encog.ml.data.MLDataPair;

import org.encog.ml.data.MLDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDataCODEC;

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

178

Dy Profl Engr Mr Santosh Kumar

public class Sample4 implements ExampleChart<XYChart>

{

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

double doublePointNumber = 0.00;
int intPointNumber = 0;
InputStream input = null;

double[] arrFunctionValue = new double[500];

double inputDiffValue = 0.00;
double targetDiffValue = 0.00;
double predictDiffValue = 0.00;
double valueDifferencePerc = 0.00;
String strFunctionValuesFileName;
int returnCode = 0;

int numberOfInputNeurons;

int numberOfOutputNeurons;

int numberOfRecordsInFile;

int intNumberOfRecordsInTestFile;
double realTargetDiffValue;

double realPredictDiffValue;
String functionValuesTrainFileName;
String functionValuesTestFileName;
String trainFileName;

String priceFileName;

String testFileName;

String chartTrainFileName;

String chartTestFileName;

String networkFileName;

int workingMode;

String cvsSplitBy = ",";

// De-normalization parameters

static
static

static
static

double Nh = 1;
double N1 = -1;
double Dh = 50.00;
double D1 = -20.00;

Dy Profl Engr Mr Santosh Kumar

179

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

static String inputtargetFileName §

static double lastFunctionValueForTraining = 0.00;
static int tempIndexField;

static double tempTargetField;

static int[] arrIndex = new int[100];

static double[] arrTarget = new double[100];

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new Arraylist<Double>();

static XYChart Chart;

@0verride
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("Days").yAxisTitle("y= f(x)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.
getAWTColor(ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColoxr(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

180

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.OutsideS);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.PLAIN, 11));
Chart.getStyler().setDatePattexrn("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Interval to normalize

double Nh
double N1

// Values
double Dh
double D1

try
{

1;
_1;

in the sliding windows
50.00;
-20.00;

// Configuration

// Setting the mode of the program run
workingMode = 1; // Set to run the program in the training mode

if (workingMode == 1)

{

// Configure the program to run in the training mode

trainFileName = "C:/Book Examples/Sample4 Norm Train_ Sliding
Windows File.csv";

functionValuesTrainFileName = "C:/Book Examples/Sample4
Function values Period 1.csv";

chartTrainFileName = "XYLine Sample4 Train Chart";
numberOfRecordsInFile = 51;

181

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

else
{

// Configure the program to run in the testing mode
trainFileName = "C:/Book_Examples/Sample4 Norm Train_Sliding_
Windows File.csv";
functionValuesTrainFileName = "C:/Book Examples/Sample4
Function values Period 1.csv";
chartTestFileName = "XYLine Sample4 Test Chart";
numberOfRecordsInFile = 51;
lastFunctionValueForTraining = 100.00;

}
R e e L
// Common configuration
/e e e e e e e
networkFileName = "C:/Book Examples/Example4 Saved Network File.csv";
inputtargetFileName = "C:/Book_Examples/Sample4 Input File.csv";

numberOfInputNeurons = 10;
numberOfOutputNeurons = 1;

// Check the working mode to run

// Training mode. Train, validate, and save the trained network file
if(workingMode == 1)

{

// Load function values for training file in memory
loadFunctionValueTrainFileInMemory();

File file1
File file2

new File(chartTrainFileName);

new File(networkFileName);

if(filel.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the error Code

182

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

do
{

returnCode = trainvalidateSaveNetwork();
} while (returnCode > 0);
} // End the train logic

else

{

// Test mode. Test the approximation at the points where
// neural network was not trained

// Load function values for training file in memory
loadInputTargetFileInMemory();

//loadFunctionValueTrainFileInMemory();
File file1l = new File(chartTestFileName);

if(filel.exists())
filel.delete();

loadAndTestNetwork();

}

catch (NumberFormatException e)

{

System.err.println("Problem parsing workingMode.workingMode = " +
workingMode);
System.exit(1);

}
catch (Throwable t)

{
t.printStackTrace();

System.exit(1);
}

183

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

finally

{
Encog.getInstance().shutdown();

}
Encog.getInstance().shutdown();

return Chart;

} // End of the method

// Load CSV to memory.
// @return The loaded dataset.
T e e
public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.
// @param Command line arguments. No arguments are used.
// ===========z====z==============sss=scsossssssosssoosssssssssSSsSSEo=ss
public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new Sample4();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

184

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

static public int trainValidateSaveNetwork()
{
double functionValue = 0.00;
double denormInputValueDiff = 0.00;
double denormTargetValueDiff = 0.00;
double denormTargetValueDiff 02 = 0.00;
double denormPredictValueDiff = 0.00;
double denormPredictValueDiff 02 = 0.00;

// Load the training CSV file in memory

MLDataSet trainingSet =
loadCSV2Memory(trainFileName, numberOfInputNeurons,
numberOfOutputNeurons, true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,10));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
network.addLayer(new BasicLayer(new ActivationTANH(),true,13));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));

// Output layer
network.addLayer(new BasicLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

185

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

186

int epoch = 1;
returnCode = 0;

do
{
train.iteration();
System.out.println("Epoch #" + epoch + " Error:'

+ train.getError());
epoch++;

if (epoch >= 11000 &3 network.calculateError(trainingSet) > 0.00000119)

{

returnCode = 1;

System.out.printIln("Error = " + network.calculateError
(trainingSet));

System.out.println("Try again");

return returnCode;

}

} while(train.getError() > 0.000001187);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

double sumGlobalDifferencePerc = 0.00;
double sumGlobalDifferencePerc 02 = 0.00;

double averGlobalDifferencePerc = 0.00;
double maxGlobalDifferencePerc = 0.00;
double maxGlobalDifferencePerc_02 = 0.00;

int m = 0; // Record number in the input file
double xPoint Initial = 1.00;

double xPoint Increment = 1.00;

double xPoint = xPoint Initial - xPoint Increment;

realTargetDiffValue = 0.00;
realPredictDiffValue = 0.00;

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

for(MLDataPair pair: trainingSet)
{
M+
xPoint = xPoint + xPoint_Increment;

if(xPoint > 50.00)
break;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

// De-normalize the values

denormInputValueDiff =((D1 - Dh)*inputDiffValue - Nh*D1 +
Dh*N1)/(NL - Nh);

denormTargetValueDiff = ((D1 - Dh)*targetDiffValue - Nh*D1 +
Dh*N1)/(N1 - Nh);

denormPredictValueDiff =((D1 - Dh)*predictDiffValue - Nh*D1 +
Dh*N1)/(N1 - Nh);

functionValue = arrFunctionValue[m-1];

realTargetDiffValue = functionValue + denormTargetValueDiff;
realPredictDiffValue = functionValue + denormPredictValueDiff;

valueDifferencePerc =
Math.abs(((realTargetDiffValue - realPredictDiffValue)/
realPredictDiffValue)*100.00);

System.out.println ("xPoint = " + xPoint +

"

realTargetDiffValue = " + realTargetDiffValue +
" realPredictDiffValue = " + realPredictDiffValue);

sumGlobalDifferencePerc = sumGlobalDifferencePerc +
valueDifferencePerc;

187

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

if (valueDifferencePerc > maxGlobalDifferencePerc)
maxGlobalDifferencePerc = valueDifferencePerc;

xData.add(xPoint);
yDatal.add(realTargetDiffValue);
yData2.add(realPredictDiffValue);

} // End for pair loop

Chart.addSeries("Actual data", xData, yDatai);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesi
XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averGlobalDifferencePerc = sumGlobalDifferencePerc/numberOfRecordsInFile;

System.out.println(" ");
System.out.println("maxGlobalDifferencePerc = " + maxGlobalDifferencePerc +

" averGlobalDifferencePerc = " + averGlobalDifferencePerc);

188

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7
returnCode = 0;

return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

PROCESSING COMPLEX PERIODIC FUNCTIONS

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();

List<Double> yData1
List<Double> yData2

int intStartingPriceIndexForBatch = 0;
int intStartingDatesIndexForBatch = 0;
double sumGlobalDifferencePerc = 0.00;
double maxGlobalDifferencePexc = 0.00;

double averGlobalDifferencePerc = 0.00;

double targetToPredictPercent = 0;
double maxGlobalResultDiff = 0.00;
double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;
double maxGlobalInputPrice = 0.00;
double sumGlobalInputPrice = 0.00;

double averGlobalInputPrice = 0.00;
double maxGlobalIndex = 0;

double inputDiffValueFromRecord = 0.00;

new ArraylList<Double>();
new ArraylList<Double>();

double targetDiffValueFromRecord = 0.00;
double predictDiffValueFromRecord = 0.00;

double denormInputValueDiff = 0.00;

double denormTargetValueDiff = 0.00;

double denormTargetValueDiff 02 = 0.00;

double denormPredictValueDiff = 0.00;

double denormPredictValueDiff 02 = 0.00;

189

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

double normTargetPriceDiff;

double normPredictPriceDiff;

String templine;

String[] tempWorkFields;

double tempInputXPointValueFromRecord = 0.0;
double tempTargetXPointValueFromRecord = 0.00;
double tempValueDiffence = 0.00;

double functionValue;

double minXPointValue = 0.00;

double minTargetXPointValue = 0.00;

int tempMinIndex = 0;

double rTempTargetXPointValue = 0.00;

double rTempPriceDiffPercKey = 0.00;

double rTempPriceDiff = 0.00;

double rTempSumDiff = 0.00;

double r1 = 0.00;

double r2 = 0.00;

BufferedReader br4;
BasicNetwork network;

int k1 = 0;

// Process testing records

maxGlobalDifferencePerc = 0.00;
averGlobalDifferencePerc = 0.00;
sumGlobalDifferencePerc = 0.00;

realTargetDiffValue = 0.00;
realPredictDiffValue = 0.00;

// Load the training dataset into memory

MLDataSet trainingSet =
loadCSV2Memory(trainFileName, numberOfInputNeurons,numberOfOutput
Neurons,true,CSVFormat.ENGLISH,false);

190

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject (new
File(networkFileName));

int m = 0; // Index of the current record

// Record number in the input file

double xPoint Initial = 51.00;

double xPoint Increment = 1.00;

double xPoint = xPoint Initial - xPoint Increment;

for (MLDataPair pair: trainingSet)
{
M+
xPoint = xPoint + xPoint_Increment;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

if(m == 1)
functionValue = lastFunctionValueForTraining;
else

functionValue = realPredictDiffValue;

// De-normalize the values

denormInputValueDiff =((D1 - Dh)*inputDiffvalue - Nh*D1 +
Dh*N1)/(N1 - Nh);

denormTargetValueDiff = ((D1 - Dh)*targetDiffValue - Nh*D1 +
Dh*N1)/(N1 - Nh);

191

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

192

denormPredictValueDiff =((D1 - Dh)*predictDiffValue - Nh*Dl +
Dh*N1)/(N1 - Nh);

realTargetDiffValue = functionValue + denormTargetValueDiff;
realPredictDiffValue = functionValue + denormPredictValueDiff;

valueDifferencePerc =
Math.abs(((realTargetDiffValue - realPredictDiffValue)/
realPredictDiffValue)*100.00);

System.out.println ("xPoint = " + xPoint + " realTargetDiffValue = " +
realTargetDiffValue + " realPredictDiffValue = " +
realPredictDiffValue);

sumGlobalDifferencePerc = sumGlobalDifferencePerc + valueDifferencePerc;

if (valueDifferencePerc > maxGlobalDifferencePerc)
maxGlobalDifferencePerc = valueDifferencePerc;

xData.add(xPoint);
yDatal.add(realTargetDiffValue);
yData2.add(realPredictDiffValue);

} // End for pair loop
// Print the max and average results

System.out.println(" ");
averGlobalDifferencePerc = sumGlobalDifferencePerc/numberOfRecordsInFile;

System.out.println("maxGlobalResultDiff = " + maxGlobalDifferencePerc);
System.out.println("averGlobalResultDiff = " + averGlobalDifferencePerc);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yDatal);
XYSeries series2 = Chart.addSeries("Predicted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

// Save the chart image
try
{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName,
BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

System.out.println("End of testing for test records");
} // End of the method

S
// Load Function values for training file in memory
L S OO ———
public static void loadFunctionValueTrainFileInMemory()

{

BufferedReader bri = null;

String line = "";
String cvsSplitBy = ",";

String tempXPointValue 3
double tempYFunctionValue = 0.00;

try
{
bri = new BufferedReader(new FileReader(functionValuesTrainFileName));
int 1 & -1
int ¢ = <23

while ((line = bri.readlLine()) != null)
{

i++;

T++;

193

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

// Skip the header line
if(i » 0)
{
// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempYFunctionValue = Double.parseDouble(workFields[0]);
arrFunctionValue[r] = tempYFunctionValue;

//System.out.println("arrFunctionValue[r] = " +
arrFunctionValue[r]);
}
} // end of the while loop
bri.close();
}
catch (IOException ex)
{
ex.printStackTrace();
System.err.println("Error opening files = " + ex);
System.exit(1);
}

}
//::::::::::::::::::==========:::
// Load Sample4 Input_File into 2 arrays in memory
//==
public static void loadInputTargetFileInMemory()

{
BufferedReader bri = null;
String line = "";
String cvsSplitBy = ",";
String tempXPointValue = "";
double tempYFunctionValue = 0.00;
194

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

try
{

bri = new BufferedReader(new FileReader(inputtargetFileName));

int i = -13
_2;

]

int r

while ((line = bri.readlLine()) != null)
{

i++;

T++;

// Skip the header line

if(i > 0)

{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

tempTargetField = Double.parseDouble(workFields[1]);

arrIndex[r] = 1;
arrTarget[r] = tempTargetField;
}
} // end of the while loop
bri.close();
}
catch (IOException ex)
{
ex.printStackTrace();
System.err.println("Exrror opening files = " + ex);
System.exit(1);
}

}
} // End of the class

195

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

As always, you'll load the training file into memory and build the network. The
built network has the input layer with ten neurons, the four hidden layers (each with
13 neurons), and the output layer with a single neuron. Once the network is built, you'll
train the network by looping over the epochs until the network error clears the error
limit. Finally, you'll save the trained network on disk (it will be used later by the testing
method).

Notice that you call the training method in a loop (as you did in the previous
example). When after 11,000 iterations the network error is still not less than the error
limit, you exit the training method with a return code of 1. That will trigger calling the
training method again with the new set of weight/bias parameters (Listing 7-2).

Listing 7-2. Code Fragment at the Beginning of the Training Method

// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numberOfInputNeurons, numberOfOutputNeurons,
true,CSVFormat.ENGLISH,false);

// Create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,10));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,13));
// Output layer

network.addLayer(new Basiclayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

196

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

int epoch = 1;
returnCode = 0;

do

train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getErroxr());

epoch++;

if (epoch >= 11000 & network.calculateError(trainingSet) > 0.00000119)

{
// Exit the training method with the return code = 1
returnCode = 1;
System.out.println("Try again");
return returnCode;
}

} while(train.getError() > 0.000001187);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

Next, you loop over the pair data set, getting from the network the input, actual, and
predicted values for each record. The record values are normalized, so you denormalize
their values. The following formula is used for denormalization.

f(x)=((D, ~Dy) x~ N, D, +N," Dy, }/(N, -N,,)

where:
x: Input data point
D;: Minimum (lowest) value of x in the input data set
Dy: Maximum (highest) value of x in the input data set
N;: The left part of the normalized interval [-1, 1] = -1

Ny: The right part of the normalized interval [-1, 1] =1

197

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

After the denormalization, you calculate the realTargetDiffValue and
realPredictDiffValue fields, print their values in the processing log, and populate
the chart data for the current record. Finally, you save the chart file on disk and exit the
training method with return code 0 (Listing 7-3).

Listing 7-3. Code Fragment at the End of the Training Method

int m = 0;

double xPoint Initial = 1.00;

double xPoint Increment = 1.00;

double xPoint = xPoint Initial - xPoint_Increment;
realTargetDiffValue = 0.00;

realPredictDiffValue = 0.00;

for(MLDataPair pair: trainingSet)
{
M++;
xPoint = xPoint + xPoint Increment;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
inputDiffValue = inputData.getData(0);
targetDiffValue = actualData.getData(0);
predictDiffValue = predictData.getData(0);

// De-normalize the values

denormInputValueDiff =((D1 - Dh)*inputDiffValue - Nh*D1 +
Dh*N1)/(N1 - Nh);

denormTargetValueDiff = ((D1 - Dh)*targetDiffValue - Nh*D1 +
Dh*N1)/(N1 - Nh);

denormPredictValueDiff =((D1 - Dh)*predictDiffValue - Nh*D1l +
Dh*N1)/(N1 - Nh);

functionValue = arrFunctionValue[m-1];

198

Dy Profl Engr Mr Santosh Kumar

}

XYSeries seriesi
XYSeries series2

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

realTargetDiffValue = functionValue + denormTargetValueDiff;
realPredictDiffValue = functionValue + denormPredictValueDiff;

valueDifferencePerc =
Math.abs(((realTargetDiffValue - realPredictDiffValue)/
realPredictDiffValue)*100.00);

System.out.println ("xPoint = " + xPoint +
" realTargetDiffValue = " + realTargetDiffValue +
" realPredictDiffValue = " + realPredictDiffValue);

sumDifferencePerc = sumDifferencePerc + valueDifferencePerc;

if (valueDifferencePerc > maxDifferencePerc)
maxDifferencePerc = valueDifferencePerc;

xData.add(xPoint);
yDatal.add(realTargetDiffValue);
yData2.add(realPredictDiffValue);

// End for pair loop

Chart.addSeries("Actual data", xData, yDatai);
Chart.addSeries("Predict data", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

try

{

//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

199

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

catch (IOException ex)
{

ex.printStackTrace();
System.exit(3);

}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumDifferencePerc/numberOfRecordsInFile;

System.out.println(" ");
System.out.println("maxDifferencePerc = " + maxDifferencePerc +

averNormDifferencePerc = " + averNormDifferencePerc);

returnCode = 0;
return returnCode;

} // End of the method

So far, the processing logic of the training method is about the same as in the previous
examples, disregarding that the format of the training data set is different and includes
sliding window records. You will see a substantial change in the logic of the testing method.

Training the Network

Listing 7-4 shows the training processing results.

Listing 7-4. Training Results

xPoint = 1.0 TargetDiff = 102.99999 PredictDiff = 102.98510
xPoint = 2.0 TargetDiff = 107.99999 PredictDiff = 107.99950
xPoint = 3.0 TargetDiff = 114.99999 PredictDiff = 114.99861
xPoint = 4.0 TargetDiff = 130.0 PredictDiff = 130.00147
xPoint = 5.0 TargetDiff = 145.0 PredictDiff = 144.99901
xPoint = 6.0 TargetDiff = 156.99999 PredictDiff = 157.00011
xPoint = 7.0 TargetDiff = 165.0 PredictDiff = 164.99849
xPoint = 8.0 TargetDiff = 181.00000 PredictDiff = 181.00009
xPoint = 9.0 TargetDiff = 197.99999 PredictDiff = 197.99984
200

Dy Profl Engr Mr Santosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

xPoint = 10.0 TargetDiff = 225.00000 PredictDiff = 224.99914
xPoint = 11.0 TargetDiff = 231.99999 PredictDiff = 231.99987
xPoint = 12.0 TargetDiff = 236.00000 PredictDiff = 235.99949
xPoint = 13.0 TargetDiff = 230.0 PredictDiff = 230.00122
xPoint = 14.0 TargetDiff = 220.00000 PredictDiff = 219.99767
xPoint = 15.0 TargetDiff = 207.0 PredictDiff = 206.99951
xPoint = 16.0 TargetDiff = 190.00000 PredictDiff = 190.00221
xPoint = 17.0 TargetDiff = 180.00000 PredictDiff = 180.00009
xPoint = 18.0 TargetDiff = 170.00000 PredictDiff = 169.99977
xPoint = 19.0 TargetDiff = 160.00000 PredictDiff = 159.98978
xPoint = 20.0 TargetDiff = 150.00000 PredictDiff = 150.07543
xPoint = 21.0 TargetDiff = 140.00000 PredictDiff = 139.89404
xPoint = 22.0 TargetDiff = 141.0 PredictDiff = 140.99714
xPoint = 23.0 TargetDiff = 150.00000 PredictDiff = 149.99875
xPoint = 24.0 TargetDiff = 159.99999 PredictDiff = 159.99929
xPoint = 25.0 TargetDiff = 180.00000 PredictDiff = 179.99896
xPoint = 26.0 TargetDiff = 219.99999 PredictDiff = 219.99909
xPoint = 27.0 TargetDiff = 240.00000 PredictDiff = 240.00141
xPoint = 28.0 TargetDiff = 260.00000 PredictDiff = 259.99865
xPoint = 29.0 TargetDiff = 264.99999 PredictDiff = 264.99938
xPoint = 30.0 TargetDiff = 269.99999 PredictDiff = 270.00068
xPoint = 31.0 TargetDiff = 272.00000 PredictDiff = 271.99931
xPoint = 32.0 TargetDiff = 273.0 PredictDiff = 272.99969
xPoint = 33.0 TargetDiff = 268.99999 PredictDiff = 268.99975
xPoint = 34.0 TargetDiff = 266.99999 PredictDiff = 266.99994
xPoint = 35.0 TargetDiff = 264.99999 PredictDiff = 264.99742
xPoint = 36.0 TargetDiff = 253.99999 PredictDiff = 254.00076
xPoint = 37.0 TargetDiff = 239.99999 PredictDiff = 240.02203
xPoint = 38.0 TargetDiff = 225.00000 PredictDiff = 225.00479
xPoint = 39.0 TargetDiff = 210.00000 PredictDiff = 210.03944
xPoint = 40.0 TargetDiff = 200.99999 PredictDiff = 200.86493
xPoint = 41.0 TargetDiff = 195.0 PredictDiff = 195.11291
xPoint = 42.0 TargetDiff = 185.00000 PredictDiff = 184.91010
xPoint = 43.0 TargetDiff = 175.00000 PredictDiff = 175.02804
xPoint = 44.0 TargetDiff = 165.00000 PredictDiff = 165.07052
xPoint = 45.0 TargetDiff = 150.00000 PredictDiff = 150.01101

201

Dy Profl Engr Mr Santosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

xPoint = 46.0 TargetDiff = 133.00000
xPoint = 47.0 TargetDiff = 121.00000
xPoint = 48.0 TargetDiff = 109.99999
xPoint = 49.0 TargetDiff = 100.00000
xPoint = 50.0 TargetDiff = 102.99999

PredictDiff = 132.91352
PredictDiff = 121.00125
PredictDiff = 110.02157
PredictDiff = 100.01322
PredictDiff = 102.98510

maxExrrorPerc = 0.07574160995391013
averErrorPerc = 0.01071011328541703

Figure 7-5 shows the chart of the training results.

y=fx)

Figure 7-5. Chart of the training/validation results

Testing the Network

First, you change the configuration data to process the testing logic. You load the
previously saved trained network. Notice here that you don’tload the testing data set. You
will be determining the current function value in the following way. On the first step of the
loop, the current function value is equal to the lastFunctionValueForTraining variable,
which was calculated during the training process. This variable holds the function value at
the last point, which is 50. On all the following steps of the loop, you set the current record
value to the function value calculated during the previous step of the loop.

202

Dr Prof Engr Mr Saniosh Kumar

CHAPTER7 PROCESSING COMPLEX PERIODIC FUNCTIONS

Near the beginning of this example I explained how you will calculate the predicted

values during the testing phase. I repeat this explanation here:

“During the test, you will calculate the function’s next-day value in the
Jollowing way. By being at point x = 50, you want to calculate the predicted
Junction value at the next point, x = 51. Feeding the difference between the
xPoint values at the current and previous points (field 1) to the trained
network, you will get back the predicted difference between the function
values at the next and current points. Therefore, the predicted function
value at the next point is equal to the sum of the actual function value at the
current point and the predicted value difference obtained from the trained

network.,”

Next, you loop over the pair data set starting from xPoint 51 (the first point of the
testing interval). At each step of the loop, you obtain the input, actual, and predicted

values for each record, denormalize their values, and calculate realTargetDiffValue

and realPredictDiffValue for each record. You print their values as the testing log and

populate the chart elements with data for each record. Finally, you save the generated

chart file. Listing 7-5 shows the test processing results.

Listing 7-5. Testing Results

xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint

51
52
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

O O O O O O O O O © © O o © o O

TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff

= 102.
= 107.
= 114.
= 129.
= 144.
= 156.
= 164.
= 180.
= 197.
= 224.
= 231.
= 235.
.98077
= 219.
= 206.
= 189.

= 229

99999
98510
98461
98322
98469
98371
98383
98232
98241
98225
98139
98127

98199
97966
97917

PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff

Dy Profl Engr Mr Santosh Kumar

102.
107.
114.
129.
144.
156.
164.
180.
197.
224,
231.
235.
229,
219.
206.
189.

98510
98461
98322
98470
98371
98383
98232
98241
98225
98139
98127
98077
98199
97966
97917
98139

203

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint
xPoint

67.
68.
69.
70.
i
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
g1

©C O O O O O O O OO O OO O O oo oo o o o o o o

TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff
TargetDiff

98139
98147
98124
97102
04646
94050
93764
93640
93573
93465
93374
93515
93381
93318
93387
93318
93287
93262
93256
253.92998
239.93075
224.95278
209.95756
200.99701
194.86194

179.
169.
159.
149.
140.
140.
149.
159.
179.
219.
239.
259.
264.
269.
271,
272,
268.
266.
264.

PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff
PredictedDiff

maxGlobalResultDiff = 0.07571646804925916
averGlobalResultDiff = 0.01071236446121567

Figure 7-6 shows the chart of the testing results.

204

Dy Profl Engr Mr Santosh Kumar

179.
169.
159.
150.
139.
140.
149.
159.
179.
219.
239.
259.
264.
269.
2714,
272,
268.
266.
264.
253
239.
224.
209.

200

98147
98124
97102
04646
94050
93764
93640
93569
93465
93374
93515
93381
93318
93387
93319
93287
93262
93256
92998
93075
95277
95756
99701

.86194
194.

97485

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

280.00 —

260.00 —

240.00 —

220.00 —

200.00 —

y=1(x)

160.00 —

140.00 —

120.00 —

100.00 —

85.00 920.00 95.00 100.00

Figure 7-6. The chart of the test result records

Both charts practically overlap.

Digging Deeper

In this example, you learned that by using some special data preparation techniques you
are able to calculate the function value at the first point of the next interval by knowing
the function value at the last point of the training interval. Repeating this process for the
rest of the points in the testing interval, you get the function values for all points of the
test interval.

Why do I always mention that the function needs to be periodic? Because you
determine the function values on the next interval based on the results calculated for
the training interval. This technique can also be applied to nonperiodic functions. The
only requirement is that the function values on the next interval can be determined in
some way based on the values in the training interval. For example, consider a function
where values on the next interval double the values on the training interval. Such a
function is not periodic, but the techniques discussed in this chapter will work. Also, it
is not necessary that each point in the next interval be determined by the corresponding
point in the training interval. As long as some rule exists for determining the function

205

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 7 PROCESSING COMPLEX PERIODIC FUNCTIONS

value at some point on the next interval based on the function value at some point on
the training interval, this technique will work. That substantially increases the class of
functions that the network can process outside the training interval.

Tip How do you obtain the error limit? At the start, just guess the error limit
value and run the training process. If you see while looping over the epochs that
the network error easily clears the error limit, then decrease the error limit and try
again. Keep decreasing the error limit value until you see that the network error is
able to clear the error limit; however, it must to work hard to do this.

When you find such an error limit, try to play with the network architecture by
changing the number of hidden layers and the number of neurons within the
hidden layers to see whether it is possible to decrease the error limit even more.
Remember that for more complex function topologies, using more hidden layers
will improve the results. If while increasing the number of hidden layers and the
number of neurons you reach the point when the network error degrades, stop this
process and go back to the previous number of layers and neurons.

Summary

In this chapter, you saw how to approximate a complex periodic function. The training
and testing data sets were transformed to the format of sliding window records to add
the function topology information to the data. In the next chapter, I will discuss an even
more complex situation that involves the approximation of a noncontinuous function
(which is currently a known problem for the neural network approximation).

206

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8

Approximating
Noncontinuous Functions

This chapter will discuss the neural network approximation of noncontinuous
functions. Currently, this is a problematic area for neural networks because network
processing is based on calculating partial function derivatives (using the gradient
descent algorithm), and calculating them for noncontinuous functions at the points
where the function value suddenly jump or drop leads to questionable results. We
will dig deeper into this issue in this chapter. The chapter also includes a method I
developed that solves this issue.

Example 5: Approximating Noncontinuous
Functions

You will first attempt to approximate a noncontinuous function (shown in Figure 8-1) by
using conventional neural network processing so you can see that the results are of very
low quality. I will explain why this happens and then introduce the method that allows
you to approximate such functions with good precision.

207
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_8

D¥ Piold Erlr:;r e Saniosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

1600.00 —

1400.00 —

1200.00 —

1000.00 —

600.00 —

400.00 —

200.00 —

0.00 —

I I I l [I I [I I |

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 9200.00 1000.00

Day

Figure 8-1. Chart of noncontinuous function

As you remember from the preceding chapters, neural network backpropagation
uses partial derivatives of the network error function to redistribute the error calculated
from the output layer to all hidden-layer neurons. It repeats this iterative process by
moving in the direction opposite to the divergent function to find one of the local
(possibly global) error function minimums. Because of the problem of calculating
divergent/derivatives for noncontinuous functions, approximating such functions is
problematic.

The function for this example is given by its values at 1,000 points. You are
attempting to approximate this function using the traditional neural network
backpropagation process. Table 8-1 shows a fragment of the input data set.

208

Dv Prof Engr Mr Sanlosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Table 8-1. Fragment of the Input Data Set

xPoint yValue xPoint yValue xPoint yValue

1 107.387 31 137.932 61 199.499
2 110.449 32 140.658 62 210.45

3 116.943 33 144.067 63 206.789
4 118.669 34 141.216 64 208.551
5 108.941 35 141.618 65 210.739
6 103.071 36 142.619 66 206.311
7 110.16 37 149.811 67 210.384
8 104.933 38 151.468 68 197.218
9 11412 39 156.919 69 192.003
10 118.326 40 159.757 70 207.936
11 118.055 41 163.074 71 208.041
12 125.764 42 160.628 72 204.394
13 128.612 43 168.573 73 194.024
14 132.722 44 163.297 74 193.223
15 132.583 45 168.155 75 205.974
16 136.361 46 175.654 76 206.53

17 134.52 47 180.581 77 209.696
18 132.064 48 184.836 78 209.886
19 129.228 49 178.259 79 217.36

20 121.889 50 185.945 80 217.095
21 113.142 51 187.234 81 216.827
22 125.33 52 188.395 82 212.615
23 124.696 53 192.357 83 219.881
24 125.76 54 196.023 84 223.883
25 131.241 55 193.067 85 227.887

(continued)

209

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Table 8-1. (continued)

xPoint yValue xPoint yValue xPoint yValue
26 136.568 56 200.337 86 236.364
27 140.847 57 197.229 87 236.272
28 139.791 58 201.805 88 238.42
29 131.033 59 206.756 89 241.18
30 136.216 60 205.89 90 242.341

This data set needs to be normalized on the interval [-1,1]. Table 8-2 shows a

fragment of the normalized input data set.

Table 8-2. Fragment of the Normalized Input Data Set

xPoint yValue xPoint yValue xPoint yValue
-1 -0.93846 -0.93994 -0.89879 -0.87988 -0.81883
-0.998 -0.93448 -0.93794 -0.89525 -0.87788 -0.80461
-0.996 -0.92605 -0.93594 -0.89082 -0.87588 -0.80936
-0.99399 -0.92381 -0.93393 -0.89452 -0.87387 -0.80708
-0.99199 -0.93644 -0.93193 -0.894 -0.87187 -0.80424
-0.98999 -0.94406 -0.92993 -0.8927 -0.86987 -0.80999
-0.98799 -0.93486 -0.92793 -0.88336 -0.86787 -0.8047
-0.98599 -0.94165 -0.92593 -0.88121 -0.86587 -0.82179
-0.98398 -0.92971 -0.92392 -0.87413 -0.86386 -0.82857
-0.98198 -0.92425 -0.92192 -0.87045 -0.86186 -0.80788
-0.97998 -0.9246 -0.91992 -0.86614 -0.85986 -0.80774
-0.97798 -0.91459 -0.91792 -0.86931 -0.85786 -0.81248
-0.97598 -0.91089 -0.91592 -0.859 -0.85586 -0.82594
-0.97397 -0.90556 -0.91391 -0.86585 -0.85385 -0.82698

(continued)
210

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Table 8-2. (continued)

xPoint yValue xPoint yValue xPoint yValue
-0.97197 -0.90574 -0.91191 -0.85954 -0.85185 -0.81042
-0.96997 -0.90083 -0.90991 -0.8498 -0.84985 -0.8097
-0.96797 -0.90322 -0.90791 -0.8434 -0.84785 -0.80559
-0.96597 -0.90641 -0.90591 -0.83788 -0.84585 -0.80534
-0.96396 -0.91009 -0.9039 -0.84642 -0.84384 -0.79564
-0.96196 -0.91962 -0.9019 -0.83644 -0.84184 -0.79598
-0.95996 -0.93098 -0.8999 -0.83476 -0.83984 -0.79633
-0.95796 -0.91516 -0.8979 -0.83325 -0.83784 -0.8018
-0.95596 -0.91598 -0.8959 -0.82811 -0.83584 -0.79236
-0.95395 -0.9146 -0.89389 -0.82335 -0.83383 -0.78716
-0.95195 -0.90748 -0.89189 -0.82719 -0.83183 -0.78196
-0.94995 -0.90056 -0.88989 -0.81774 -0.82983 -0.77096
-0.94795 -0.895 -0.88789 -0.82178 -0.82783 -0.77108
-0.94595 -0.89638 -0.88589 -0.81584 -0.82583 -0.76829
-0.94394 -0.90775 -0.88388 -0.80941 -0.82382 -0.7647
-0.94194 -0.90102 -0.88188 -0.81053 -0.82182 -0.76319
Network Architecture

The network for this example consists of the input layer with a single neuron, seven
hidden layers (each with five neurons), and an output layer with a single neuron.
See Figure 8-2.

211

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Input Hidden Output
Layer Layers Layer

NRSE7 R 7 ™ RS REEE7 RSB RSB
L REK IREX XREL XREL IREL XREL

@ S0 4 O T O F OS T OS T O
IR ' SN ' SIHIR . IR ' SR ' SR
\ QX\S 2 RN RN RN 7K }\S‘/ﬁt,‘. R

V4 N\~ ~L/ NN . L/ N . L/ A\ . L/ N V4 N
NN

p

Figure 8-2. Network architecture

Program Code

Listing 8-1 shows the program code.

Listing 8-1. Program Code

// Approximation non-continuous function whose values are given
// at 999 points. The input file is normalized.
// e e e . e e e

package sample5;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;

212

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.lLocalDate;

import java.time.Month;

import java.time.Zoneld,

import java.util.Arraylist;

import java.util.Calendar;

import java.util.Date;

import java.util.list;

import java.util.locale;
import java.util.Properties;

import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

encog.Encog;
encog.engine.network.activation.ActivationTANH;
encog.engine.network.activation.ActivationRelU;
encog.ml.data.MLData;

encog.ml.data.MLDataPair;
encog.ml.data.MLDataSet;
encog.ml.data.buffer.MemoryDataloader;
encog.ml.data.buffer.codec.CSVDataCODEC;
encog.ml.data.buffer.codec.DataSetCODEC;
encog.neural.networks.BasicNetwork;
encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import
import

import
import
import
import

org.
org.

org.
org.
org.
org.

encog.persist.EncogDirectoryPersistence;
encog.util.csv.CSVFormat;

knowm.xchart.SwingWrapper;
knowm.xchart.XYChart;
knowm.xchart.XYChartBuilder;
knowm.xchart.XYSeries;

213

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

import
import
import
import
import
import
import
import
import
import

public
{

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

knowm.
knowm.
knowm.
knowm.
knowm.
knowm.
knowm.
knowm.
knowm.
knowm.

xchart.demo.charts.ExampleChart;
xchart.style.Styler.LegendPosition;
xchart.style.colors.ChartColor;
xchart.style.colors.XChartSeriesColors;
xchart.style.lines.SeriesLines;
xchart.style.markers.SeriesMarkers;
xchart.BitmapEncoder;
xchart.BitmapEncoder.BitmapFormat;
xchart.QuickChart;

xchart.SwingWrapper;

class Sample5 implements ExampleChart<XYChart>

// Interval to normalize
static double Nh = 1;
static double N1 = -1;

// First column

static double minXPointDl
static double maxXPointDh

1.00;
1000.00;

// Second column - target data
static
static

static
static

static

static
static
static
static
static
static
static
static
static

214

double
double

double

minTargetValueDl
maxTargetValueDh

60.00;
1600.00;

doublePointNumber = 0.00;

int intPointNumber = 0;

InputStream input = null;
double[] arrPrices = new double[2500];

double
double
double
double
double
double
double
double

normInputXPointValue = 0.00;
normPredictXPointValue = 0.00;
normTargetXPointValue = 0.00;
normDifferencePerc = 0.00;
returnCode = 0.00;
denormInputXPointValue = 0.00;
denormPredictXPointValue = 0.00;
denormTargetXPointValue = 0.00;

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

static double valueDifference = 0.00;
static int numberOfInputNeurons;
static int numberOfOutputNeurons;
static int intNumberOfRecordsInTestFile;
static String trainFileName;

static String priceFileName;

static String testFileName;

static String chartTrainFileName;
static String chartTestFileName;
static String networkFileName;

static int workingMode;

static String cvsSplitBy = ",";

static List<Double> xData = new ArrayList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new ArraylList<Double>();

static XYChart Chart;

@Override
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").
build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColor
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColor(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);

215

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendSeriesLinelength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));
Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));
Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");
//Chart.getStyler().setLocale(Locale.GERMAN);

try
{

// Configuration
// Set the mode to run the program
workingModee = 1; // Training mode

if(workingMode == 1)

{

// Training mode
trainFileName = "C:/Book_Examples/Sample5 Train_
Norm.csv";

chartTrainFileName = "XYLine Sample5 Train Chart Results";

}

216

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

else

{
// Testing mode

intNumberOfRecordsInTestFile = 3;
testFileName = "C:/Book Examples/Sample2 Norm.csv";
chartTestFileName = "XYLine Test Results Chart";

}

// Common part of config data

networkFileName = "C:/Book Examples/Sample5 Saved Network File.csv";
numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

// Check the working mode to run

if(workingMode == 1)

{

// Training mode
File file1l = new File(chartTrainFileName);
File file2 = new File(networkFileName);

if(filel.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the error Code

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

217

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

else

{
// Test mode

loadAndTestNetwork();

}
catch (Throwable t)

{
t.printStackTrace();

System.exit(1);
}
finally

{
Encog.getInstance().shutdown();

}

Encog.getInstance().shutdown();
return Chart;

} // End of the method

// Load CSV to memory.

// @return The loaded dataset.

Y B e e e e e

public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal, boolean headers, CSVFormat format, boolean significance)

{

DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);

MemoryDataloader load = new MemoryDataloader(codec);

MLDataSet dataset = load.external2Memory();

return dataset;

218

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// The main method.

// @param Command line arguments. No arguments are used.

// ====================s===================s=============

public static void main(String[] args)

{
ExampleChart<XYChart> exampleChart = new Sample5();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();

} // End of the main method

static public double trainValidateSaveNetwork()
{
// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory(trainFileName, numberOfInputNeurons,numberOfQutput
Neurons,true,CSVFormat.ENGLISH,false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasicLayer(new ActivationTANH(),true,5));
network.addLayer (new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

219

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation
(network, trainingSet);

int epoch = 1;

do
{

train.iteration();
System.out.println("Epoch #" + epoch + " Error:'

+ train.getError());
epoch++;

if (epoch »>= 11000 && network.calculateError(trainingSet) > 0.00225)

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError() > 0.0022);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");
double sumNormDifferencePerc = 0.00;

double averNormDifferencePexrc = 0.00;

double maxNormDifferencePerc = 0.00;

int m = 0;

double xPointer = 0.00;

220

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

for(MLDataPair pair: trainingSet)
{
M++;
xPointer++;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValue - Nh*minXPointDl + maxXPointDh *N1)/
(N1 - Nh);

denormTargetXPointValue =((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValue - Nh*minTargetValueDl + maxTargetValue

Dh*N1)/(N1 - Nh);

valueDifference =
Math.abs(((denormTargetXPointValue - denormPredictXPointValue)/
denormTargetXPointValue)*100.00);

System.out.println ("RecordNumber = " + m + denormTargetX
PointValue = " + denormTargetXPointValue + " denormPredictX
PointValue + denormPredictXPointValue + " value
Difference + valueDifference);

sumNoxrmDifferencePerc = sumNormDifferencePerc + valueDifference;

221

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

222

if (valueDifference > maxNormDifferencePerc)
maxNormDifferencePerc = valueDifference;

xData.add(xPointer);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop

Chart.addSeries("Actual data", xData, yDatai);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesi
XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network);

System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNormDifferencePerc/1000.00;

System.out.println(" ");
System.out.println("maxNoxmDifferencePerc = " + maxNormDifference
averNormDifferencePerc = " + averNormDifferencePerc);

n

Perc +

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

returnCode = 0.00;
return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictPercent = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputXPointValueFromRecord = 0.00;
double normTargetXPointValueFromRecord = 0.00;
double normPredictXPointValueFromRecord = 0.00;

BasicNetwork network;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory
MLDataSet testingSet = loadCSV2Memory(testFileName, numberOfInput
Neurons, numberOfOutputNeurons,true,CSVFormat.ENGLISH, false);

223

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

// Load the saved trained network
network = (BasicNetwork)EncogDirectoryPersistence.loadObject(new File
(networkFileName));

int 1 = - 1; // Index of the current record
double xPoint = -0.00;

for (MLDataPair pair: testingSet)
{
it++;
xPoint = xPoint + 2.00;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

normInputXPointValueFromRecord = inputData.getData(0);
normTargetXPointValueFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

// De-normalize them

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

targetToPredictPercent = Math.abs((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue*100);

System.out.println("xPoint = " + xPoint + " denormTargetX
PointValue = " + denormTargetXPointValue + " denormPredictX
PointValue = " + denormPredictXPointValue + " targetToPredict
Percent = " + targetToPredictPercent);

224

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredictPercent;

// Populate chart elements
xData.add(xPoint);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop

// Print the max and average results
System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/intNumberOfRecordsInTestFile;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +

i = " + maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yDatal);
XYSeries series2 = Chart.addSeries("Predicted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

228

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

System.out.println ("The Chart has been saved");
System.out.println("End of testing for test records");

} // End of the method

} // End of the class

Code Fragments for the Training Process

The training method is called in a loop until it successfully clears the error limit. You
load the normalized training file and then create the network with one input layer

(one neuron), seven hidden layers (each with five neurons), and the output layer (one
neuron). Next, you train the network by looping over the epochs until the network error
clears the error limit. At that point, you exit the loop. The network is trained, and you
save it on disk (it will be used by the testing method). Listing 8-2 shows the fragment of
the training method.

Listing 8-2. Fragment of the Code of the Training Method

// Load the training CSV file in memory

MLDataSet trainingSet =

loadCSV2Memory (trainFileName, numberOfInputNeurons, numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasicLayer(null,true,1));

// Hidden layer

network.addLayer(new Basiclayer(new ActivationTANH(),true,5));
network.addLayer(new Basiclayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));

226

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// Output layer
network.addLayer(new BasicLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;

do
{
train.iteration();
System.out.println("Epoch #" + epoch +

Error:" + train.getError());

epoch++;

if (epoch »>= 11000 && network.calculateError(trainingSet) > 0.00225)
// 0.0221 0.00008
{
returnCode = 1;
System.out.println("Try again");
return returnCode;

}

} while(train.getError() > 0.0022);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

Next you loop over the pair data set and retrieve from the network the input, actual,
and predicted values for each record. You then denormalize the retrieved values, put
them in the log, and populate the chart data.

int m = 0;
double xPointer = 0.00;

for(MLDataPair pair: trainingSet)
{

M+

xPointer++;
227

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

1

228

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*normInputX
PointValue - Nh*minXPointDl + maxXPointDh *N1)/(N1 - Nh);

denormTargetXPointValue =((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValue - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

valueDifference = Math.abs(((denormTargetXPointValue - denormPredictX
PointValue)/denormTargetXPointValue)*100.00);

System.out.println ("RecordNumber = " + m + " denormTargetX
PointValue = " + denormTargetXPointValue + " denormPredictXPoint
Value = " + denormPredictXPointValue + " valueDifference = " +
valueDifference);

sumNormDifferencePerc = sumNormDifferencePerc + valueDifference;

if (valueDifference > maxNormDifferencePerc)
maxNoxrmDifferencePexrc = valueDifference;

xData.add(xPointer);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

// End for pair loop

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Finally, you calculate the average and maximum values of the results and save the
chart file.

Chart.addSeries("Actual data", xData, yData1l);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesi

XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setLineStyle(SeriesLines.SOLID);

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNormDifferencePerc/1000.00;

System.out.println(" ");
System.out.println("maxNoxmDifferencePerc = " + maxNormDifferencePerc +
averNormDifferencePerc = " + averNormDifferencePerc);

returnCode = 0.00;
return returnCode;

} // End of the method

229

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Unsatisfactory Training Results

Listing 8-3 shows the ending fragment of the training results.

Listing 8-3. Ending Fragment of the Training Results

RecordNumber = 983
DiffPerc = 10.24513
RecordNumber = 984
DiffPerc = 16.45267
RecordNumber = 985
DiffPerc = 7.822511
RecordNumber = 986
DiffPerc = 3.636554
RecordNumber = 987
DiffPerc = 8.198962
RecordNumber = 988
DiffPerc = 4.106298
RecordNumber = 989
DiffPerc = 2.619107
RecordNumber = 990
DiffPerc = 9.981002
RecordNumber = 991
DiffPerc = 1.794825
RecordNumber = 992
DiffPerc = 5.776254
RecordNumber = 993
DiffPerc = 1.469424
RecordNumber = 994
DiffPerc = 2.508528
RecordNumber = 995
DiffPerc = 6.926634
RecordNumber = 996
DiffPerc = 10.33159
RecordNumber = 997
DiffPerc = 21.37374

230

TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue

TargetValue

I

1036.19

1095.63

968.

896.

903.

825.

735

797.

672.

619.

619.

590.

547.

514.

455.

75

24

25

88

.09

87

81

14

32

47

28

62

4

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

Dy Profl Engr Mr Santosh Kumar

930.

915

892

863.

829.

791

754.

718.

684.

654.

628

605.

585

567.

552.

03102

.36958

.96942

64775

19287

.96691

34279

23458

88576

90309

42044

28210

18808

78844

73603

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

RecordNumber = 998 TargetValue = 470.43 PredictedValue = 539.71156
DiffPerc = 14.72728
RecordNumber = 999 TargetValue = 480.28 PredictedValue = 528.43269
DiffPerc = 10.02596
RecordNumber = 1000 TargetValue = 496.77 PredictedValue = 518.65485

DiffPerc = 4.405429

maxNoxrmDifferencePerc = 97.69386964911284
averNormDifferencePerc = 7.232624870097155

This approximation is low quality. Even with the network being well optimized, the
average approximation error for all records is more than 8 percent, and the maximum
approximation error (the worst approximated record) is more than 97 percent. Such
function approximation is certainly not usable. Figure 8-3 shows the chart of the
approximation results.

1600.00 —

1400.00 — i Q !4
3 é%, }/%
1200.00 — X l; : 4] s

i /4
400.00 — ” ’ 'J/‘i /

il T
0.00 — ———

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 9200.00 1000.00
X

f gt .}'- l’_
1000.00 — é ;‘9 ! %
= ‘l ¢ {‘,‘ ’ ?
= 800,00 — z @ } X
& r:.’ * !:’ :x
y 4
600.00 — / t / $
| Z4 v
|
P

Figure 8-3. Low-quality function approximation

I knew that this approximation would not work and stated this at the beginning of
the example. However, it was deliberately done to demonstrate the point. Now, I will

show how this noncontinuous function can be successfully approximated using a neural
network.

231

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

The problem with this function approximation is the function topology (that has
sudden jumps or drops of the function values at certain points). So, you will break
the input file into a series of one-record input files that are called micro-batches.
This is similar to the batch training, but here you actively control the batch size. By
doing this, you eliminate the negative impact of the difficult function topology. After
breaking up the data set, every record will be isolated and not linked to the previous
or next function value. Breaking the input file into micro-batches creates 1,000 input
files, which the network processes individually. You link each trained network with
the record it represents. During the validation and testing processes, the logic finds
the trained network that best matches the first field of the corresponding testing or
validation record.

Approximating the Noncontinuous Function Using
the Micro-Bach Method

Let’s break the normalized training data set into micro-batches. Each micro-batch data
set should contain the label record and one record from the original file to be processed.
Table 8-3 shows how a micro-batch data set looks.

Table 8-3. Micro-Batch File

xPoint Function Value

ol -0.938458442

Here you write a simple program to break the normalized training data set into
micro-batches. As a result of executing this program, you created 999 micro-batch data
sets (numbered from 0 to 998). Figure 8-4 shows a fragment of the list of the micro-batch
data sets.

232

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

i34)sampleS_Train_Norm_Batch_000.csv
ix{)SampleS_Train_Norm_Batch_001.csv
ixg)sampleS_Train_Norm_Batch_002.csv
ix4) SampleS_Train_Norm_Batch_003.csv
ix)sampleS_Train_Norm_Batch_004.csv
ix5)SampleS_Train_Norm_Batch_005.csv
ix5)SampleS_Train_Norm_Batch_006.csv
{x}) sampleS_Train_Norm_Batch_007.csv
ixj)SampleS_Train_Norm_Batch_008.csv
ixg)SampleS_Train_Norm_Batch_009.csv
ixi)SampleS_Train_Norm_Batch_010.csv
@Samde S_Train_Norm_Batch_011.csv
i35 SampleS_Train_Norm_Batch_012.csv
2] sampleS_Train_Norm_Batch_013.csv
ixi)sampleS_Train_Norm_Batch_014.csv
) SampleS_Train_Norm_Batch_015.csv
{25 SampleS_Train_Norm_Batch_016.csv
ix5)SampleS_Train_Norm_Batch_017.csv
ix5)SampleS_Train_Norm_Batch_018.csv
ix5) sampleS_Train_Norm_Batch_019.csv
ixg)sampleS_Train_Norm_Batch_020.csv
ix3) SampleS_Train_Norm_Batch_021.csv
ix{)sampleS_Train_Norm_Batch_022.csv
ixg)SampleS_Train_Norm_Batch_023.csv
ixg) SampleS_Train_Norm_Batch_024.csv
ixj) sampleS_Train_Norm_Batch_025.csv
ix{)sampleS_Train_Norm_Batch_026.csv
ixg) SampleS_Train_Norm_Batch_027.csv
*3)SampleS_Train_Norm_Batch_028.csv
23]SampleS_Train_Norm_Batch_029.csv
ix5)SampleS_Train_Norm_Batch_030.csv

Figure 8-4. Fragment of list of normalized training micro-batch data sets

This set of the micro-batch data sets is now the input for training the network.

Program Code for Micro-Batch Processing

Listing 8-4 shows the program code.

233

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Listing 8-4. Program Code

//
/7
//
//
//
//
/7
//
//
//
//
//
48
//
//
//

//

Approximation of non-continuous function using the micro-batch method.
The input is the normalized set of micro-batch files (each micro-batch
includes a single day record).

Each record consists of:

- normDayValue

- normTargetValue

The number of inputlLayer neurons is 12
The number of outputlLayer neurons is 1

The difference of this program is that it independently trains many
single-day networks. That allows training each daily network using the
best value of weights/biases parameters, therefore achieving the best
optimization results for each year.

Each network is saved on disk and a map is created to link each saved
trained
network with the corresponding training micro-batch file.

package sample5 microbatches;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;

import java.awt.Color;

234

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

import java.awt.Font;

import java.io.BufferedReader;
import java.time.Month;

import java.time.Zoneld;

import java.util.Arraylist;
import java.util.Calendar;
import java.util.list;
import java.util.Llocale;
import java.util.Properties;

import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

resilient.

import
import

import
import
import
import
import
import
import
import
import
import
import

org.
org.

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

encog.Encog;
encog.engine.network.activation.ActivationTANH;
encog.engine.network.activation.ActivationRelU;
encog.ml.data.MLData;
encog.ml.data.MLDataPair;
encog.ml.data.MLDataSet;
encog.ml.data.buffer.MemoryDataloader;
encog.ml.data.buffer.codec.CSVDataCODEC;
encog.ml.data.buffer.codec.DataSetCODEC;
encog.neural.networks.BasicNetwork;
encog.neural.networks.layers.Basiclayer;
encog.neural.networks.training.propagation.
ResilientPropagation;
encog.persist.EncogDirectoryPersistence;
encog.util.csv.CSVFormat;

knowm.xchart.SwingWrapper;
knowm.xchart.XYChart;
knowm.xchart.XYChartBuilder;
knowm.xchart.XYSeries;
knowm.xchart.demo.charts.ExampleChart;
knowm.xchart.style.Styler.LegendPosition;
knowm.xchart.style.colors.ChartColor;
knowm.xchart.style.colors.XChartSeriesColors;
knowm.xchart.style.lines.SerieslLines;
knowm.xchart.style.markers.SeriesMarkers;
knowm.xchart.BitmapEncoder;

235

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;
import org.knowm.xchart.SwingWrapper;

public class Sample5 Microbatches implements ExampleChart<XYChart>
{

// Normalization parameters

// Normalizing interval
static double Nh = 1;
static double N1 = -1;

static double inputDayDh = 1000.00;

static double inputDayDl = 1.00;

static double targetFunctValueDiffPercDh = 1600.00;
static double targetFunctValueDiffPercDl = 60.00;

static String cvsSplitBy = ",";

static Properties prop = null;

static String strWorkingMode;

static String strNumberOfBatchesToProcess;
static String strTrainFileNameBase;
static String strTestFileNameBase;

static String strSaveTrainNetworkFileBase;
static String strSaveTestNetworkFileBase;
static String strValidateFileName;

static String strTrainChartFileName;
static String strTestChartFileName;
static String strFunctValueTrainFile;
static String strFunctValueTestFile;
static int intDayNumber;

static double doubleDayNumber;

static int intWorkingMode;

static int numberOfTrainBatchesToProcess;
static int numberOfTestBatchesToProcess;
static int intNumberOfRecordsInTrainFile;
static int intNumberOfRecordsInTestFile;
static int intNumberOfRowsInBatches;

236

Dy Profl Engr Mr Santosh Kumar

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

int intInputNeuronNumber;

int intOutputNeuronNumber;

String strOutputFileName;

String strSaveNetworkFileName;

String strDaysTrainFileName;

XYChart Chart;

String iString;

double inputFunctValueFromFile;

double targetToPredictFunctValueDiff;

int[] returnCodes = new int[3];

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new Arraylist<Double>();
List<Double> yData2 = new ArraylList<Double>();
double[] DaysyearDayTraining = new double[1200];
String[] strTrainingFileNames = new String[1200];
String[] strTestingFileNames = new String[1200];
String[] strSaveTrainNetworkFileNames = new String[1200];
double[] linkToSaveNetworkDayKeys = new double[1200];
double[] linkToSaveNetworkTargetFunctValueKeys = new double[1200];
double[] arrTrainFunctValues = new double[1200];
double[] arrTestFunctValues = new double[1200];

@override
public XYChart getChart()

{

// Create Chart

Chart

= new XYChartBuilder().width(900).height(500).title(getClass().

getSimpleName()).xAxisTitle("day").yAxisTitle("y=F(day)").build();
// Customize Chart

Chart.

getStyler().setPlotBackgroundColor(ChartColor.getAWTColor(Chart

Color.GREY));

Chart.
Chart.
Chart.
Chart.
Chart.

getStyler().setPlotGridlLinesColor(new Color(255, 255, 255));
getStyler().setChartBackgroundColor(Color.WHITE);
getStyler().setLegendBackgroundColor(Color.PINK);
getStyler().setChartFontColor(Coloxr.MAGENTA);
getStyler().setChartTitleBoxBackgroundColor(new Color(o, 222, 0));

237

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.OutsideE);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));
Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));
//Chart.getStyler().setDayPattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Config data
// Training mode
intWorkingMode = 0;

// Testing mode

numberOfTrainBatchesToProcess = 1000;

numberOfTestBatchesToProcess = 999;

intNumberOfRowsInBatches = 1;

intInputNeuronNumber = 1;

intOutputNeuronNumber = 1;

strTrainFileNameBase = "C:/My Neural Network Book/Temp Files/Sample5
Train_Norm Batch ";

strTestFileNameBase = "C:/My Neural Network Book/Temp Files/Sample5
Test Norm Batch ";

strSaveTrainNetworkFileBase = "C:/Book Examples/Sample5 Save Network
Batch ";

238

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

strTrainChartFileName = "C:/Book_Examples/Sample5 Chart Train_File_
Microbatch.jpg";

strTestChartFileName = "C:/Book_Examples/Sample5 Chart Test File
Microbatch.jpg";

// Generate training batch file names and the corresponding saveNetwork
file names
intDayNumber = -1; // Day number for the chart

for (int i = 0; i < numberOfTrainBatchesToProcess; i++)
{
intDayNumber++;
iString = Integer.toString(intDayNumber);

if (intDayNumber >= 10 & intDayNumber < 100)
{
strOutputFileName = strTrainFileNameBase + "0" + iString + ".csv";
strSaveNetworkFileName = strSaveTrainNetworkFileBase + "0" +
iString + ".csv";

else

{
if (intDayNumber < 10)
{
strOutputFileName = strTrainFileNameBase + "00" + iString +
".csv";
strSaveNetworkFileName = strSaveTrainNetworkFileBase + "00" +

° . 1 ",
iString + ".csv';

else

{

strOutputFileName = strTrainFileNameBase + iString +

«

<Csv¥3

strSaveNetworkFileName = strSaveTrainNetworkFileBase +
iString + ".csv";

239

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

strTrainingFileNames[intDayNumber] = strOutputFileName;
strSaveTrainNetworkFileNames[intDayNumber] = strSaveNetwork
FileName;

} // End the FOR loop

// Build the array linkToSaveNetworkFunctValueDiffKeys
String templine;

double tempNormFunctValueDiff = 0.00;

double tempNormFunctValueDiffPerc = 0.00;

double tempNormTargetFunctValueDiffPerc = 0.00;
String[] tempWorkFields;
try

{

intDayNumber = -1; // Day number for the chart

for (int m = 0; m < numberOfTrainBatchesToProcess; m++)
{
intDayNumber++;
BufferedReader br3 = new BufferedReader(newFileReader
(strTrainingFileNames[intDayNumber]));
tempLine = br3.readlLine();

// Skip the label record and zero batch record
tempLine = br3.readline();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);
tempNormFunctValueDiffPerc = Double.parseDouble

(tempWorkFields[0]);

tempNormTargetFunctValueDiffPerc = Double.parseDouble
(tempWorkFields[1]);

linkToSaveNetworkDayKeys[intDayNumber] = tempNormFunctValue
DiffPerc;

linkToSaveNetworkTargetFunctValueKeys[intDayNumber] =
tempNormTargetFunctValueDiffPerc;
} // End the FOR loop

240

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// Generate testing batche file names
if(intWorkingMode == 1)
{

intDayNumber = -1;

for (int i = 0; i < numberOfTestBatchesToProcess; i++)

{

intDayNumber++;
iString = Integer.toString(intDayNumber);

// Construct the testing batch names
if (intDayNumber >= 10 & intDayNumber < 100)

{

strOutputFileName = strTestFileNameBase + "0" +

iString + ".csv";

else

{
if (intDayNumber < 10)

{

strOutputFileName = strTestFileNameBase + "00" +
iString + ".csv";

else

{

strOutputFileName = strTestFileNameBase +

s . n ",
1string + ".csv';

}
strTestingFileNames[intDayNumber] = strOutputFileName;

} // End the FOR loop
} // End of IF
} // End for try

241

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

catch (IOException io1)

{
iol.printStackTrace();
System.exit(1);

}

// Load, train, and test Function Values file in memory
//loadTrainFunctValueFileInMemory();

if(intWorkingMode == 0)
{

// Train mode
int paramErrorCode;
int paramBatchNumber;
int paramR;
int paramDayNumber;
int paramS;

File filel = new File(strTrainChartFileName);
if(filel.exists())

filel.delete();
returnCodes[0] = 0; // Clear the error Code

returnCodes[1] = 0; // Set the initial batch Number to 0;
returnCodes[2] = 0; // Day number;
do

{

paramkErrorCode = returnCodes[0];
paramBatchNumber = returnCodes[1];
paramDayNumber = returnCodes[2];
returnCodes = trainBatches(paramErrorCode,paramBatchNumber,
paramDayNumber) ;
} while (returnCodes[0] > 0);

} // End the train logic
else

{
// Testing mode

File file2 = new File(strTestChartFileName);
242

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

if(file2.exists())
file2.delete();

loadAndTestNetwork();

// End the test logic
}

Encog.getInstance().shutdown();
//System.exit(0);
return Chart;

} // End of method

// Load CSV to memory.
// @return The loaded dataset.

public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.

// @param Command line arguments. No arguments are used.
// ======================ss=s=s=ssssssssssssssssssss=ssss
public static void main(String[] args)

{
ExampleChart<XYChart> exampleChart = new Sample5 Microbatches();

XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

243

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

// This method trains batches as individual networkis
// saving them in separate trained datasets

static public int[] trainBatches(int paramErrorCode,int paramBatch
Number,int paramDayNumber)
{

int rBatchNumber;

double targetToPredictFunctValueDiff = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double normInputFunctValueDiffPercFromRecord = 0.00;

double normTargetFunctValuel = 0.00;

double normPredictFunctValuel = 0.00;

double denormInputDayFromRecordi;

double denormInputFunctValueDiffPercFromRecord;

double denormTargetFunctValuel = 0.00;

double denormAverPredictFunctValuell = 0.00;

BasicNetwork networki = new BasicNetwork();

// Input layer
networkl.addLayer(new Basiclayer(null,true, intInputNeuronNumber));

// Hidden layer.

network1.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
networkl.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network1.addLayer(new Basiclayer(new ActivationTANH(),true,7));
network1.addLayer(new Basiclayer(new ActivationTANH(),true,7));
networkl.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
networkl.addLayer(new Basiclayer(new ActivationTANH(),true,7));
networkl.addLayer(new Basiclayer(new ActivationTANH(),true,7));

// Output layer

networkl.addLayer(new BasiclLayer(new ActivationTANH(),false,
intOutputNeuronNumber));
networkl.getStructure().finalizeStructure();

networki.reset();
244

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Loop over batches
intDayNumber = paramDayNumber; // Day number for the chart

for (rBatchNumber = paramBatchNumber; rBatchNumber < numberOfTrain
BatchesToProcess; rBatchNumber++)

{

intDayNumber++;

// Load the training file in memory
MLDataSet trainingSet = loadCSV2Memory(strTrainingFileNames
[rBatchNumber], intInputNeuronNumber, intOutputNeuronNumber, true,
CSVFormat.ENGLISH,false);
// train the neural networki
ResilientPropagation train = new ResilientPropagation(networki,
trainingSet);
int epoch = 1;
do
{
train.iteration();
epoch++;

for (MLDataPair pairii: trainingSet)

{
MLData inputDatal = pairii.getInput();

MLData actualDatal = pairii.getIdeal();
MLData predictDatal = networki.compute(inputDatal);

// These values are Normalized as the whole input is
noxrmInputFunctValueDiffPercFromRecord = inputDatal.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatail.getData(0);

245

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

denormInputFunctValueDiffPercFromRecord =((inputDayDl -
inputDayDh)*normInputFunctValueDiffPercFromRecord -
Nh*inputDayDl + inputDayDh*N1)/(N1 - Nh);
denormTargetFunctValuel = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValuel - Nh*target
FunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);
denormAverPredictFunctValue11l =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValuel - Nh*
targetFunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/
(N1 - Nh);

targetToPredictFunctValueDiff = (Math.abs(denormTarget
FunctValuel - denormAverPredictFunctValue1l1)/denormTarget
FunctValue1)*100;

}

if (epoch >= 1000 && targetToPredictFunctValueDiff > 0.0000071)
{
returnCodes[0]
returnCodes[1]
returnCodes[2]

15
rBatchNumber;
intDayNumber-1;

return returnCodes;

}
} while(targetToPredictFunctValueDiff > 0.000007);

// This batch is optimized

// Save the networki for the current batch
EncogDirectoryPersistence.saveObject(newFile(strSaveTrainNetwork
FileNames[rBatchNumber]),network1);

// Get the results after the networki optimization
int 1 = = 13

for (MLDataPair pairi: trainingSet)

{

i++;

MLData inputDatal = pairi.getInput();
246

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networki.compute(inputDatail);

// These values are Normalized as the whole input is
normInputFunctValueDiffPercFromRecord = inputDatail.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatal.getData(0);

// De-normalize the obtained values
denormInputFunctValueDiffPercFromRecord =((inputDayDl - inputDayDh)*
normInputFunctValueDiffPercFromRecord - Nh*inputDayDl +
inputDayDh*N1)/(N1 - Nh);

denormTargetFunctValue1l = ((targetFunctValueDiffPercDl - target
FunctValueDiffPercDh)*normTargetFunctValuel - Nh*targetFunctValue
DiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);

denormAverPredictFunctValue1l =((targetFunctValueDiffPercDl - target
FunctValueDiffPercDh)*normPredictFunctValuel - Nh*targetFunctValue
DiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);

//inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTargetFunctValuel -
denormAverPredictFunctValuei1)/denormTargetFunctValuel)*100;

System.out.println("intDayNumber = " + intDayNumber + " target

FunctionValue = " + denormTargetFunctValuel +

predictFunction
Value = " + denormAverPredictFunctValue1l + " valurDiff = " +
targetToPredictFunctValueDiff);

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)maxGlobal
ResultDiff =targetToPredictFunctValueDiff;

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunct
ValueDiff;

// Populate chart elements
doubleDayNumber = (double) rBatchNumber+1;
xData.add(doubleDayNumber);

247

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

yData1.add(denormTargetFunctValue1);
yData2.add(denormAverPredictFunctValue11);

} // End for FunctValue pairi loop
} // End of the loop over batches
sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunctValue
Diff;
averGlobalResultDiff = sumGlobalResultDiff/numberOfTrainBatchesTo
Process;

// Print the max and average results

System.out.println(" ");

System.out.println(" ");

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

XYSeries seriesi
XYSeries series2

Chart.addSeries("Actual", xData, yData1l);
Chart.addSeries("Predicted", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
series1.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

248

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

returnCodes[0] = 0;
returnCodes[1] = 0;
returnCodes[2] = 0;

return returnCodes;

} // End of method

// Load the previously saved trained networkil and tests it

// processing the Test record

{

static public void loadAndTestNetwork()

System.

out.println("Testing the networkis results");

List<Double> xData = new ArrayList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

targetToPredictFunctValueDiff = 0;
maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;
maxGlobalIndex = 0;
normInputDayFromRecordl = 0.00;
normTargetFunctValuel = 0.00;
normPredictFunctValuel = 0.00;
denormInputDayFromRecordl = 0.00;
denormTargetFunctValuel = 0.00;
denormAverPredictFunctValuel = 0.00;
normInputDayFromRecord2 = 0.00;
normTargetFunctValue2 = 0.00;
normPredictFunctValue2 = 0.00;
denormInputDayFromRecord2 = 0.00;
denormTargetFunctValue2 = 0.00;
denormAverPredictFunctValue2 = 0.00;
normInputDayFromTestRecord = 0.00;
denormInputDayFromTestRecord = 0.00;

Dy Profl Engr Mr Santosh Kumar

249

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

250

double denormAverPredictFunctValue = 0.00;
double denormTargetFunctValueFromTestRecord = 0.00;
String templine;

String[] tempWorkFields;

double dayKeyFromTestRecord = 0.00;

double targetFunctValueFromTestRecord = 0.00;
double r1 = 0.00;

double r2 = 0.00;

BufferedReader br4;

BasicNetwork networki;

BasicNetwork network2;

int k1 = 0;

int k3 = 0;
try

1

// Process testing records

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

for (ki = 0; ki < numberOfTestBatchesToProcess; ki++)

{

// Read the corresponding test micro-batch file.
br4 = new BufferedReader(new FileReader(strTestingFileNames[k1]));
tempLine = br4.readlLine();

// Skip the label record
tempLine = br4.readlLine();

// Break the line using comma as separator
tempWorkFields = templLine.split(cvsSplitBy);

dayKeyFromTestRecord = Double.parseDouble(tempWorkFields[0]);
targetFunctValueFromTestRecord = Double.parseDouble(tempWork
Fields[1]);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// De-normalize the dayKeyFromTestRecord
denormInputDayFromTestRecord = ((inputDayDl - inputDayDh)*day
KeyFromTestRecord - Nh*inputDayDl + inputDayDh*N1)/(N1 - Nh);

// De-normalize the targetFunctValueFromTestRecord
denoxrmTargetFunctValueFromTestRecord = ((targetFunctValue
DiffPercDl - targetFunctValueDiffPercDh)*targetFunctValueFrom
TestRecord - Nh*targetFunctValueDiffPercDl + targetFunctValue
DiffPercDh*N1)/(N1 - Nh);

// Load the corresponding training micro-batch dataset in memory
MLDataSet trainingSet1 = loadCSV2Memory(strTrainingFile
Names[k1],intInputNeuronNumber,intOutputNeuronNumber,true,
CSVFormat.ENGLISH,false);
networkl = (BasicNetwork)EncogDirectoryPersistence.
loadObject(new File(strSaveTrainNetworkFileNames[k1]));

// Get the results after the networki optimization
int iMax = 0;

int 1 = - 1; // Index of the array to get results
for (MLDataPair pairi: trainingSet1)
{
i++;

iMax = i+1;

MLData inputDatal = pairil.getInput();
MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networkl.compute(inputDatal);

// These values are Normalized
normInputDayFromRecordl = inputDatail.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatai.getData(0);

// De-normalize the obtained values
denormInputDayFromRecordl = ((inputDayDl - inputDayDh)*
normInputDayFromRecordl - Nh*inputDayDl + inputDayDh*N1)/
(N1 - Nh);

251

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

252

denormTargetFunctValue1l = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValuel - Nh*
targetFunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/
(N1 - Nh);

denormAverPredictFunctValuel =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValuel - Nh*
targetFunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/
(N1 - Nh);

} // End for pairi

// Now calculate everything again for the SaveNetwork (which
// key is greater than dayKeyFromTestRecord value)in memory

MLDataSet trainingSet2 = loadCSV2Memory(strTrainingFile
Names[k1+1],intInputNeuronNumber, intOutputNeuronNumber,true,
(SVFormat.ENGLISH,false);

network2 = (BasicNetwork)EncogDirectoryPersistence.loadObject
(new File(strSaveTrainNetworkFileNames[k1+1]));

// Get the results after the networkl optimization
iMax = 0;
i= - 13

for (MLDataPair pair2: trainingSet2)
{
i++;
iMax = i+1;
MLData inputData2 = pair2.getInput();

MLData actualData2 = pair2.getIdeal();
MLData predictData2 = network2.compute(inputData2);

// These values are Normalized
normInputDayFromRecord2 = inputData2.getData(0);
normTargetFunctValue2 = actualData2.getData(0);
normPredictFunctValue2 = predictData2.getData(0);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// De-normalize the obtained values
denormInputDayFromRecord2 = ((inputDayDl - inputDayDh)*
normInputDayFromRecord2 - Nh*inputDayDl + inputDayDh*N1)/
(NI - Nh);

denormTargetFunctValue2 = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValue2 - Nh*target
FunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/

(N1 - Nh);

denormAverPredictFunctValue2 =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValue2 -
Nh*targetFunctValueDiffPercDl + targetFunctValueDiffPercDh
*N1)/(NL - Nh);

} // End for pair1 loop

// Get the average of the denormAverPredictFunctValuel and
denormAverPredictFunctValue2 denormAverPredictFunctValue =
(denormAverPredictFunctValuel + denormAverPredictFunctValue2)/2;

targetToPredictFunctValueDiff =
(Math.abs(denormTargetFunctValueFromTestRecord - denormAver
PredictFunctValue)/denormTargetFunctValueFromTestRecord)*100;

System.out.println("Record Number = " + ki1 + " DayNumber =
" + denormInputDayFromTestRecord + " denormTargetFunctValue

FromTestRecord = " + denormTargetFunctValueFromTestRecord +

denormAverPredictFunctValue = " + denormAverPredict
FunctValue + " valurDiff = " + targetToPredictFunctValueDiff);
if (targetToPredictFunctValueDiff > maxGlobalResultDiff)

{

maxGlobalIndex = iMax;
maxGlobalResultDiff =targetToPredictFunctValueDiff;

}

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredict
FunctValueDiff;

253

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS
// Populate chart elements

xData.add(denormInputDayFromTestRecord);
yData1.add(denormTargetFunctValueFromTestRecord);
yData2.add(denormAverPredictFunctValue);

} // End of loop using ki
// Print the max and average results
System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/numberOfTestBatchesToProcess;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +
" i ="+ maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

} // End of TRY
catch (IOException e1)

{

el.printStackTrace();

}

// All testing batch files have been processed
XYSeries seriesl = Chart.addSeries("Actual", xData, yDatail);
XYSeries series2 = Chart.addSeries("Forecasted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Coloxr.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,

BitmapFormat.JPG, 100);
}

254

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

catch (Exception bt)

{
bt.printStackTrace();

}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for mini-batches training");

} // End of the method
} // End of the Encog class

The processing logic is quite different in this program. Let’s start from the
getChart () method. Apart from the usual statements needed by the XChart package,
you generate here the names for the training micro-batches and save-network files. The
generated file names for micro-batches must match the micro-batch file names being
prepared on disk when you broke the normalized training file into micro-batches.

The names for saved-network files have a corresponding structure. These generated
names will be used by the training method to save trained networks corresponding
to micro-batches on disk. The generated names are saved in two arrays called
strTrainingFileNames[] and strSaveTrainNetworkFileNames[].

Figure 8-5 shows the fragment of the generated saved network.

255

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

(%) sampleS_Save_Network_Batch_000.csv
‘3;5] SampleS5_Save_Network_Batch_001.csv
ix3)SampleS_Save_Network_Batch_002.csv
ixj] sample5_Save_Network_Batch_003.csv
iX5)SampleS_Save_Network_Batch_004.csv
ix5)SampleS_Save_Network_Batch_005.csv
iX3)Sample5_Save_Network_Batch_006.csv
ixj] sampleS_Save_Network_Batch_007.csv
ix5)sampleS_Save_Network_Batch_008.csv
iX3)Sample5_Save_Network_Batch_009.csv
ix3)Sample5_Save_Network_Batch_010.csv
iX5)samples_Save_Network_Batch_011.csv
ixg] Sample5_Save_Network_Batch_012.csv
ixg] sample5_Save_Network_Batch_013.csv
£X5)Sample5_Save_Network_Batch_014.csv
ix5] Sample5_Save_Network_Batch_015.csv
ixg] sample5_Save_Network_Batch_016.csv
ixg)SampleS_Save_Network_Batch_017.csv
‘i&] Sample5_Save_Network_Batch_018.csv
i35l samples_Save_Network_Batch_019.csv
ix5] Sample5_Save_Network_Batch_020.csv
(4] sample5_Save_Network_Batch_021.csv [

Figure 8-5. Fragment of the generated save-network files

Next, you generate and populate two arrays called 1inkToSaveNetworkDayKeys|]
and linkToSaveNetworkTargetFunctValueKeys|[]. For each consecutive day, you
populate the 1inkToSaveNetworkDayKeys[] array with the field1 value from the training
micro-batch records. You populate the linkToSaveNetworkTargetFunctValueKeys|]
array with the names of the corresponding saveNetworkFiles on disk. Therefore, those
two arrays hold the link between the micro-batch data set and the corresponding save-
network data set.

The program also generates the names of the testing micro-batch files, similar to
the generated names for the training micro-batch files. When all this is done, you call
the loadTrainFunctValueFileInMemory method that loads the training file values in
memory.

256

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Program Code for the getChart() Method

Listing 8-5 shows the program code for the getChart() method.

Listing 8-5. Code of the getChart Method

public XYChart getChart()
{

// Create the Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("day").yAxisTitle("y=f(day)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColox
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColor(new Color (255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColor(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.OutsideE);
Chart.getStyler().setLegendSeriesLineLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));

257

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

//Chart.getStyler().setDayPattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Config data

// For training
//intWorkingMode = 0;

// For testing
intWorkingMode = 1;
// common config data

intNumberOfTrainBatchesToProcess = 1000;
intNumberOfTestBatchesToProcess = 1000;

intNumberOfRecordsInTestFile = 999;

intNumberOfRowsInBatches = 1;

intInputNeuronNumber = 1;

intOutputNeuronNumber = 1;

strTrainFileNameBase = "C:/Book_Examples/Sample5 Train_Norm Batch_";
strTestFileNameBase = "C:/Book Examples/Sample5 Test Norm Batch ";
strSaveTrainNetworkFileBase = "C:/Book Examples/Sample5 Save Network
Batch_";

strTrainChartFileName = "C:/Book Examples/Sample5 Chart Train File
Microbatch.jpg";

strTestChartFileName = "C:/Book Examples/Sample5 Chart Test File
Microbatch.jpg";

strFunctValueTrainFile = "C:/Book Examples/Sample5 Train Real.csv";
strFunctValueTestFile = "C:/Book Examples/Sample5 Test Real.csv";

// Generate training micro-batch file names and the corresponding Save
Network file names

intDayNumber = -1; // Day number for the chart

for (int i = 0; i < intNumberOfTrainBatchesToProcess; i++)

{

intDayNumber++;

iString = Integer.toString(intDayNumber);

258

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

if (intDayNumber >= 10 & intDayNumber < 100)

{

strOutputFileName = strTrainFileNameBase + "0" + iString +
strSaveNetworkFileName = strSaveTrainNetworkFileBase + "0" +

‘.csv";

iString + ".csv";

else

{

if (intDayNumber < 10)
{

strOutputFileName = strTrainFileNameBase + "00" + iString +

" .CSV";
strSaveNetworkFileName = strSaveTrainNetworkFileBase + "00" +

iString + ".csv";

else

{

strOutputFileName = strTrainFileNameBase + iString +

"«CSV" §

strSaveNetworkFileName = strSaveTrainNetworkFileBase +
iString + ".csv";

}

strTrainingFileNames[intDayNumber] = strOutputFileName;
strSaveTrainNetworkFileNames[intDayNumber] = strSaveNetwork
FileName;

} // End the FOR loop
// Build the array linkToSaveNetworkFunctValueDiffKeys

String templine;

double tempNormFunctValueDiff = 0.00;

double tempNormFunctValueDiffPerc = 0.00;
double tempNormTargetFunctValueDiffPerc = 0.00;

String[] tempWorkFields;

259

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

try
{

intDayNumber = -1; // Day number for the chart

for (int m = 0; m < intNumberOfTrainBatchesToProcess; m++)

{

intDayNumber++;

BufferedReader br3 = new BufferedReader(new
FileReader(strTrainingFileNames[intDayNumber]));
tempLine = br3.readlLine();

// Skip the label record and zero batch record
tempLine = br3.readline();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

tempNoxmFunctValueDiffPerc = Double.parseDouble(tempWork
Fields[0]);

tempNormTargetFunctValueDiffPerc = Double.parseDouble
(tempWorkFields[1]);

linkToSaveNetworkDayKeys[intDayNumber] = tempNormFunctValue
DiffPerc;
linkToSaveNetworkTargetFunctValueKeys[intDayNumber] =
tempNormTargetFunctValueDiffPerc;

} // End the FOR loop
// Generate testing micro-batch file names

if(intWorkingMode == 1)
{

intDayNumber = -1;

for (int i = 0; i < intNumberOfTestBatchesToProcess; i++)

{

intDayNumber++;
iString = Integer.toString(intDayNumber);

260

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// Construct the testing batch names
if (intDayNumber >= 10 & intDayNumber < 100)
{
strOutputFileName = strTestFileNameBase + "0" + iString +
n .CSV";

else

{

if (intDayNumber < 10)

{

strOutputFileName = strTestFileNameBase + "00" +

iString + ".csv";

}

else

{

strOutputFileName

strTrainFileNameBase + iString +
" 'CSV";

}
}

strTestingFileNames[intDayNumber] = strOutputFileName;
} // End the FOR loop
} // End of IF

} // End for try
catch (IOException io1)

{

iol.printStackTrace();
System.exit(1);
}

loadTrainFunctValueFileInMemory();

261

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

When that part is done, the logic checks whether to run the training or testing
method. When the workingMode field is equal to 1, it calls the training method in a loop
(the way you did it previously). However, because you now have many micro-batch
training files (instead of the single data set), you need to expand the errorCode array to
hold one more value: the micro-batch number.

Code Fragment 1 of the Training Method

Inside the training file, if after many iterations the network error is unable to clear
the error limit, you exit the training method with a returnCode value of 1. The
control is returned to the logic inside the getChart() method that calls the training
method in a loop. At that point, you need to return the parameters that the micro-
batch method is being called with. Listing 8-6 shows code fragment 1 of the training
method.

Listing 8-6. Code Fragment 1 of the Training Method

if(intWorkingMode == 0)
{

// Train batches and save the trained networks

int paramErrorCode;
int paramBatchNumber;
int paramR;

int paramDayNumber;
int paramS;

File filel = new File(strTrainChartFileName);

if(filel.exists())
filel.delete();

returnCodes[0] = 0; // Clear the error Code
returnCodes[1] = 0; // Set the initial batch Number to 0;
returnCodes[2] // Set the initial day number to 0;

1
o
-

262

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

do

paramkErrorCode = returnCodes[0];
paramBatchNumber = returnCodes[1];
paramDayNumber = returnCodes[2];

returnCodes =
trainBatches(paramExrrorCode, paramBatchNumber, paramDayNumber) ;
} while (returnCodes[0] > 0);

} // End of the train logic
else

{
// Load and test the network logic

File file2 = new File(strTestChartFileName);

if(file2.exists())
file2.delete();

loadAndTestNetwork();

// End of the test logic
}

Encog.getInstance().shutdown();
return Chart;

} // End of method

Code Fragment 2 of the Training Method

Here, most of the code should be familiar to you, except the logic involved in processing
the micro-batches. You build the network. Next, you loop over the micro-batches
(remember, there are many training micro-batch files instead of a single training data set
you processed before). Inside the loop, you load the training micro-batch file in memory
and then train the network using the current micro-batch file.

263

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

When the network is trained, you save it on disk, using the name from the
linkToSaveNetworkDayKeys array that corresponds to the currently processed
micro-batch file. Looping over the pair data set, you retrieve the input, actual, and
predicted values for each micro-batch, denormalize them, and print the results as
the training log.

Within the network train loop, when after many iterations the network error is
unable to clear the error limit, you set the returnCode value to 1 and exit the training
method. The control is returned to the logic that calls the training method in a
loop. When you exit the training method, you now set three returnCode values: the
returnCode value, the micro-batch number, and the day number. That helps the logic
that calls the training method in a loop to stay within the same micro-batch and day of
processing. You also populate the results for the chart elements. Finally, you add the
chart series data, calculate the average and maximum errors for all micro-batches, print
the results as the log file, and save the chart file. Listing 8-7 shows code fragment 2 of the
training method.

Listing 8-7. Code Fragment 2 of the Training Method

// Build the network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new Basiclayer(null,true,intInputNeuronNumber));

// Hidden layer.

network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new Basiclayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,5));
network.addLayer(new Basiclayer(new ActivationTANH(),true,5));

// Output layer
network.addLayer(new Basiclayer(new ActivationTANH(),false,
intOutputNeuronNumber));

264

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

network.getStructure().finalizeStructure();
network.reset();

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Loop over micro-batches
intDayNumber = paramDayNumber; // Day number for the chart

for (rBatchNumber = paramBatchNumber; rBatchNumber < intNumberOfTrain
BatchesToProcess; rBatchNumber++)

{

intDayNumber++; // Day number for the chart

// Load the training CVS file for the current batch in memory

MLDataSet trainingSet =
loadCSV2Memory(strTrainingFileNames[rBatchNumber],intInput
NeuronNumber, intOutputNeuronNumber, true,CSVFormat.ENGLISH,false);

// train the neural network
ResilientPropagation train = new ResilientPropagation(network,
trainingSet);
int epoch = 1;
double templLastErrorPerc = 0.00;

do
{

train.iteration();
epoch++;

for (MLDataPair pairi: trainingSet)

{
MLData inputData = pairi.getInput();

MLData actualData = pairi.getIdeal();
MLData predictData = network.compute(inputData);

265

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

}
if (
{

// These values are Normalized as the whole input is
normInputFunctValueDiffPercFromRecord = inputData.getData(0);

normTargetFunctValue = actualData.getData(0);
normPredictFunctValue = predictData.getData(0);

denormInputFunctValueDiffPercFromRecord =((inputDayDl -
inputDayDh)*noxmInputFunctValueDiffPercFromRecord - Nh*inputDayDl +
inputDayDh*N1)/(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValue -
Nh*targetFunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/
(N1 - Nh);

denormPredictFunctValue = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValue - Nh*target
FunctValueDiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);

inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTargetFunctValue -
denormPredictFunctValue)/denormTargetFunctValue)*100;

epoch >= 500 &&targetToPredictFunctValueDiff > 0.0002)
returnCodes[0] = 1;
returnCodes[1] = rBatchNumber;
returnCodes[2] = intDayNumber-1;

return returnCodes;

}

} while(targetToPredictFunctValueDiff > 0.0002); // 0.00002

// Sa

ve the network for the current batch

EncogDirectoryPersistence.saveObject(newFile(strSaveTrainNetwork
FileNames[rBatchNumber]),network);

266

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// Get the results after the network optimization
int 1 = = 415

for (MLDataPair pair: trainingSet)
{

i++;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputFunctValueDiffPercFromRecord = inputData.getData(0);

normTargetFunctValue = actualData.getData(0);
normPredictFunctValue = predictData.getData(0);

denormInputFunctValueDiffPercFromRecord = ((inputDayDl - inputDayDh)*
normInputFunctValueDiffPercFromRecord - Nh*inputDayDl +
inputDayDh*N1)/(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl - targetFunct
ValueDiffPercDh)*normTargetFunctValue - Nh*targetFunctValueDiffPercDl +
targetFunctValueDiffPercDh*N1)/(N1 - Nh);

denormPredictFunctValue = ((targetFunctValueDiffPercDl - target
FunctValueDiffPercDh)*normPredictFunctValue - Nh*targetFunctValue
DiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);

inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTargetFunctValue -
denormPredictFunctValue)/denormTargetFunctValue)*100;

System.out.println("intDayNumber = " + intDayNumber + target
FunctionValue = " + denormTargetFunctValue + " predictFunction
Value = " + denormPredictFunctValue + valurDiff = " + targetTo

PredictFunctValueDiff);

267

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
maxGlobalResultDiff =targetToPredictFunctValueDiff;

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunct
ValueDiff;

// Populate chart elements
doubleDayNumber = (double) rBatchNumber+1;
xData.add(doubleDayNumber);
yDatai.add(denormTargetFunctValue);
yData2.add(denormPredictFunctValue);

} // End for the pair loop
} // End of the loop over batches

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunctValueDiff;
averGlobalResultDiff = sumGlobalResultDiff/intNumberOfTrainBatches
ToProcess;

// Print the max and average results

System.out.println(" ");

System.out.println(" ");

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

XYSeries seriesil
XYSeries series2

Chart.addSeries("Actual", xData, yData1l);
Chart.addSeries("Predicted", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,

BitmapFormat.JPG, 100);
}
268

Dy Profl Engr Mr Santosh Kumar

catch (Exception bt)

{
}

System.out.println ("The Chart has been saved");

returnCodes[0]
returnCodes[1]
returnCodes[2]

return returnCodes;

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

bt.printStackTrace();

} // End of method

I " I
o O O
“e “we we

Training Results for the Micro-Batch Method

Listing 8-8 shows the ending fragment of the training results.

Listing 8-8. Training Results

DayNumber
DiffPercf
DayNumber
DiffPercf
DayNumber
DiffPercf
DayNumber
DiffPerct
DayNumber
DiffPercf
DayNumber
DiffPercf
DayNumber
DiffPercf
DayNumber
DiffPercf

989 TargeValue = 735

6.99834E-6

990 TargeValue = 797.

6.13569E-6

991 TargeValue = 672.

5.94874E-6

992 TargeValue = 619.

5.53621E-6

993 TargeValue = 619.

5.65663E-6

994 TargeValue =

6.40373E-6

995 TargeValue =

6.49734E-6

996 TargeValue =

590.

547.

514.

.09

87

81

14

32

47

28

62

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

Dy Profl Engr Mr Santosh Kumar

735

797.

672.

619.

619.

590.

547.

514.

.09005

86995

80996

14003

32004

47004

27996

62002

269

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

DayNumber = 997 TargeValue = 455.4 Predictedvalue = 455.40000
DiffPercf = 2.73780E-7
DayNumber = 998 TargeValue = 470.43 PredictedValue = 470.42999
DiffPercf = 4.35234E-7
DayNumber = 999 TargeValue = 480.28 PredictedValue = 480.28002
DiffPercf = 3.52857E-6
DayNumber = 1000 TargeValue = 496.77 PredictedValue = 496.76999
DiffPercf = 9.81900E-7

maxGlobalResultDiff = 9.819000149262707E-7
averGlobalResultDiff = 1.9638000298525415E-9

Now, the training processing results are quite good, especially for approximating the
noncontinuous function. The average error is 0.0000000019638000298525415, the maximum
error (the worst optimized record) is 0.0000009819000149262707, and the chart looks
great. Figure 8-6 shows the chart of the training processing results using micro-batches.

1600.00 —

1400.00 —

1200.00 —

800.00 —

y=f(day)

600.00 —

400.00 —

200.00 —

0.00 —

I | | | | | | | | | |
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

day

Figure 8-6. Chart of training results using micro-batches

270

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

For testing, you will build a file with values between the training points. For example,
for the two training records 1 and 2, you will calculate a new day as the average of the two
training days. For the record’s function value, you will calculate the average of the two
training function values. This way, two consecutive training records will create a single
test record with values averaging the training records. Table 8-4 shows how the test
record looks.

Table 8-4. Test Record

1.5 108.918

It averages two training records, as shown in Table 8-5.

Table 8-5. Two Training Records

1 107.387
2 110.449

The test data set has 998 records. Table 8-6 shows a fragment of the testing data set.

Table 8-6. Fragment of the Testing Data Set

xPoint yValue xPoint yValue xPoint yValue
1.5 108.918 31.5 139.295 61.5 204.9745
2.5 113.696 32.5 142.3625 62.5 208.6195
35 117.806 33.5 142.6415 63.5 207.67
45 113.805 345 141.417 64.5 209.645
5.5 106.006 35.5 142.1185 65.5 208.525
6.5 106.6155 36.5 146.215 66.5 208.3475
5 107.5465 37.5 150.6395 67.5 203.801
8.5 109.5265 38.5 154.1935 68.5 194.6105
9.5 116.223 39.5 158.338 69.5 199.9695
10.5 118.1905 40.5 161.4155 70.5 207.9885
(continued)

271

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Table 8-6. (continued)

xPoint yValue xPoint yValue xPoint yValue
11.5 121.9095 41.5 161.851 7.5 206.2175
12.5 127.188 42.5 164.6005 72.5 199.209
135 130.667 43.5 165.935 73.5 193.6235
14.5 132.6525 44.5 165.726 74.5 199.5985
15.5 134.472 45.5 171.9045 75.5 206.252
16.5 135.4405 46.5 178.1175 76.5 208.113
17.5 133.292 47.5 182.7085 77.5 209.791
18.5 130.646 48.5 181.5475 78.5 213.623
19.5 125.5585 49.5 182.102 79.5 217.2275
20.5 117.5155 50.5 186.5895 80.5 216.961
21.5 119.236 51.5 187.8145 81.5 214.721
22.5 125.013 52.5 190.376 82.5 216.248
23.5 125.228 53.5 194.19 83.5 221.882
24.5 128.5005 54.5 194.545 84.5 225.885
25.5 133.9045 555 196.702 85.5 232.1255
26.5 138.7075 56.5 198.783 86.5 236.318
27.5 140.319 57.5 199.517 87.5 237.346
28.5 135.412 58.5 204.2805 88.5 239.8
29.5 133.6245 59.5 206.323 89.5 241.7605
30.5 137.074 60.5 202.6945 90.5 2446855

Table 8-7 shows a fragment of the normalized testing data set.

272

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Table 8-7. Fragment of the Normalized Testing Data Set

xPoint y xPoint y xPoint y

-0.9990 -0.9365 -0.9389 -0.8970 -0.8789 -0.8117
-0.9970 -0.9303 -0.9369 -0.8930 -0.8769 -0.8070
-0.9950 -0.9249 -0.9349 -0.8927 -0.8749 -0.8082
-0.9930 -0.9301 -0.9329 -0.8943 -0.8729 -0.8057
-0.9910 -0.9403 -0.9309 -0.8934 -0.8709 -0.8071
-0.9890 -0.9395 -0.9289 -0.8880 -0.8689 -0.8073
-0.9870 -0.9383 -0.9269 -0.8823 -0.8669 -0.8132
-0.9850 -0.9357 -0.9249 -0.8777 -0.8649 -0.8252
-0.9830 -0.9270 -0.9229 -0.8723 -0.8629 -0.8182
-0.9810 -0.9244 -0.9209 -0.8683 -0.8609 -0.8078
-0.9790 -0.9196 -0.9189 -0.8677 -0.8589 -0.8101
-0.9770 -0.9127 -0.9169 -0.8642 -0.8569 -0.8192
-0.9750 -0.9082 -0.9149 -0.8624 -0.8549 -0.8265
-0.9730 -0.9056 -0.9129 -0.8627 -0.8529 -0.8187
-0.9710 -0.9033 -0.9109 -0.8547 -0.8509 -0.8101
-0.9690 -0.9020 -0.9089 -0.8466 -0.8488 -0.8076
-0.9670 -0.9048 -0.9069 -0.8406 -0.8468 -0.8055
-0.9650 -0.9083 -0.9049 -0.8421 -0.8448 -0.8005
-0.9630 -0.9149 -0.9029 -0.8414 -0.8428 -0.7958
-0.9610 -0.9253 -0.9009 -0.8356 -0.8408 -0.7962
-0.9590 -0.9231 -0.8989 -0.8340 -0.8388 -0.7991
-0.9570 -0.9156 -0.8969 -0.8307 -0.8368 -0.7971
-0.9550 -0.9153 -0.8949 -0.8257 -0.8348 -0.7898

(continued)

273

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Table 8-7. (continued)

xPoint y xPoint y xPoint y

-0.9530 -0.9110 -0.8929 -0.8253 -0.8328 -0.7846
-0.9510 -0.9040 -0.8909 -0.8225 -0.8308 -0.7765
-0.9489 -0.8978 -0.8889 -0.8198 -0.8288 -0.7710
-0.9469 -0.8957 -0.8869 -0.8188 -0.8268 -0.7697
-0.9449 -0.9021 -0.8849 -0.8126 -0.8248 -0.7665
-0.9429 -0.9044 -0.8829 -0.8100 -0.8228 -0.7639
-0.9409 -0.8999 -0.8809 -0.8147 -0.8208 -0.7601

Like with the normalized training data set, you break the normalized testing data set
into micro-batches. Each micro-batch data set should contain the label record and the
record from the original file to be processed. As a result, you will get 998 micro-batch
data sets (numbered from 0 to 997). Figure 8-7 shows a fragment of the list of normalized
testing micro-batch files.

274

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

i%4)sampleS_Test_Norm_Batch_000.csv
ix5)SampleS_Test_Norm_Batch_001.csv
ix5)SampleS_Test_Norm_Batch_002.csv
i35 sampleS_Test_Norm_Batch_003.csv
£x5)SampleS_Test_Norm_Batch_004.csv
ix5)SampleS_Test_Norm_Batch_005.csv
Ex5)SampleS_Test_Norm_Batch_006.csv
iX5)sampleS_Test_Norm_Batch_007.csv
i35 SampleS_Test_Norm_Batch_008.csv
i3] SampleS_Test_Norm_Batch_009.csv
i3] sampleS_Test_Norm_Batch_010.csv
i35)SampleS_Test_Norm_Batch_011.csv
i55)SampleS_Test_Norm_Batch_012.csv
£x5)sampleS_Test_Norm_Batch_013.csv
ixg)SampleS_Test_Norm_Batch_014.csv
ix5)sampleS_Test_Norm_Batch_015.csv
Ex5)SampleS_Test_Norm_Batch_016.csv
i35 SampleS_Test_Norm_Batch_017.csv
i35 SampleS_Test_Norm_Batch_018.csv
ixg)SampleS_Test_Norm_Batch_019.csv
i35 SampleS_Test_Norm_Batch_020.csv
i35 SampleS_Test_Norm_Batch_021.csv
i35)SampleS_Test_Norm_Batch_022.csv
ixg)sampleS_Test_Norm_Batch_023.csv
i35 SampleS_Test_Norm_Batch_024.csv
i35)SampleS_Test_Norm_Batch_025.csv
£55)sampleS_Test_Norm_Batch_026.csv
i35 Sample5_Test_Norm_Batch_027.csv
i35 SampleS_Test_Norm_Batch_028.csv
ix5)SampleS_Test_Norm_Batch_029.csv
i) sampleS_Test_Norm_Batch_030.csv
i33)SampleS_Test_Norm_Batch_031.csv

Figure 8-7. Fragment of the normalized micro-batch test data set

This set of files is now the input to the neural network testing process.

Test Processing Logic

For the test processing logic, you loop over micro-batches. For each test micro-batch,

you read its record, retrieve the record values, and denormalize them. Next, you load

the micro-batch data set for point 1 (which is the closest point to the testing record but
275

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

less than it) in memory. You also load the corresponding save-network file in memory.
Looping over the pairs data set, you retrieve the input, active, and predicted values for
the micro-batch and denormalize them.

You also load the micro-batch data set for point 2 (which is the closest point to the
testing record but greater than it) in memory, and you load the corresponding save-
network file in memory. Looping over the pairs data set, you retrieve the input, active,
and predicted values for the micro-batch and denormalize them.

Next, you calculate the average predicted function values for point 1 and point 2.
Finally, you calculate the error percent and print the results as the processing log. The
rest is just the miscellaneous staff. Listing 8-9 shows the program code for the testing
method.

Listing 8-9. Code of the Testing Method

for (ki = 0; ki < intNumberOfRecordsInTestFile; ki++)

{

// Read the corresponding test micro-batch file.

br4 = new BufferedReader(new FileReader(strTestingFile
Names[k1]));

tempLine = br4.readlLine();

// Skip the label record
tempLine = br4.readlLine();

// Break the line using comma as separator
tempWorkFields = templLine.split(cvsSplitBy);

dayKeyFromRecord = Double.parseDouble(temphWorkFields[0]);
targetFunctValueFromRecord = Double.parseDouble(tempWork
Fields[1]);

// Load the corresponding test micro-batch dataset in memory
MLDataSet testingSet =
loadCSV2Memory(strTestingFileNames[k1], intInputNeuronNumber,
intOutputNeuronNumber,true,CSVFormat.ENGLISH,false);

// Load the corresponding save network for the currently
processed micro-batch
r1 = linkToSaveNetworkDayKeys[k1];

276

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject(new
File(strSaveTrainNetworkFileNames[k1]));

// Get the results after the network optimization
int iMax = 0;
int i = - 1; // Index of the array to get results

for (MLDataPair pair: testingSet)
{
i++;
iMax = i+1;
MLData inputData = pair.getInput();

MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputDayFromRecord = inputData.getData(0);
normTargetFunctValue = actualData.getData(0);
normPredictFunctValue = predictData.getData(0);

denormInputDayFromRecord = ((inputDayDl - inputDayDh)*
normInputDayFromRecord - Nh*inputDayDl + inputDayDh*N1)/
(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValue -
Nh*targetFunctValueDiffPercDl + targetFunctValue
DiffPercDh*N1)/(N1 - Nh);

denormPredictFunctValue =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*noxmPredictFunctValue - Nh*
targetFunctValueDiffPercDl + targetFunctValueDiff
PercDh*N1)/(N1 - Nh);

targetToPredictFunctValueDiff = (Math.abs(denormTarget
FunctValue - denormPredictFunctValue)/denormTargetFunct
Value)*100;

277

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

}

System.out.println("maxErrorPerc
System.out.println("averExroPerc

System.out.println("DayNumber = " + denormInputDayFrom

n "

targetFunctionValue = " + denormTarget

predictFunctionValue = " + denormPredict

Record +
FunctValue +

n

FunctValue +
ValueDiff);

valurDiff = " + targetToPredictFunct

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
{

maxGlobalIndex = iMax;
maxGlobalResultDiff =targetToPredictFunctValueDiff;

}

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredict
FunctValueDiff;

// Populate chart elements

xData.add(denormInputDayFromRecord);
yData1l.add(denormTargetFunctValue);
yData2.add(denormPredictFunctValue);

} // End for pair loop

// End of loop using ki

// Print the max and average results
System.out.println(" ");

averGlobalResultDiff = sumGlobalResultDiff/intNumberOfRecords
InTestFile;

" + maxGlobalResultDiff);
" + averGlobalResultDiff);

catch (IOException e1l)

{

278

e1.printStackTrace();

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yData1);
XYSeries series2 = Chart.addSeries("Forecasted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

System.out.println("End of testing for mini-batches training");

} // End of the method

Testing Results for the Micro-Batch Method

Listing 8-10 shows the end fragment of the testing results.

Listing 8-10. End Fragment of the Testing Results

DayNumber = 986.5 TargetValue = 899.745 AverPredictedValue = 899.74503
DiffPerc = 3.47964E-6
DayNumber = 987.5 TargetValue = 864.565 AverPredictedValue = 864.56503
DiffPerc = 3.58910E-6
DayNumber = 988.5 TargetValue = 780.485 AverPredictedValue = 780.48505
DiffPerc = 6.14256E-6

Dy Profl Engr Mr Santosh Kumar

279

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

DayNumber = 989.5 TargetValue = 766.48 AverPredictedValue = 766.48000
DiffPerc = 1.62870E-7
DayNumber = 990.5 TargetValue = 735.34 AverPredictedValue = 735.33996
DiffPerc = 6.05935E-6
DayNumber = 991.5 TargetValue = 645.975 AverPredictedValue = 645.97500

DiffPerc = 4.53557E-7
DayNumber = 992.5 TargetValue = 619.23 AverPredictedValue = 619.23003
DiffPerc = 5.59670E-6

DayNumber = 993.5 TargetValue = 604.895 AverPredictedValue = 604.89504
DiffPerc = 6.02795E-6
DayNumber = 994.5 TargetValue = 568.875 AverPredictedValue = 568.87500
DiffPerc = 2.02687E-7
DayNumber = 995.5 TargetValue = 530.95 AverPredictedValue = 530.94999
DiffPerc = 1.71056E-6
DayNumber = 996.5 TargetValue = 485.01 AverPredictedValue = 485.01001
DiffPerc = 1.92301E-6
DayNumber = 997.5 TargetValue = 462.915 AverPredictedValue = 462.91499
DiffPerc = 7.96248E-8
DayNumber = 998.5 TargetValue = 475.355 AverPredictedValue = 475.35501
DiffPerc = 1.57186E-6
DayNumber = 999.5 TargetValue = 488.525 AverPredictedValue = 488.52501

DiffPerc = 1.23894E-6

maxErrorPerc = 6.840306081962611E-6
averErrorPerc = 2.349685401959033E-6kim

Now, the testing results are also pretty good, considering that the function is
noncontinuous. The maxErrorPerc field, which is the worst error among all records, is
less than 0.0000068 percent, and the averErrorPerc field is less than 0.0000023 percent.
If the day of the current micro-batch test file is not in the middle of two save-network
keys, calculate the values proportionally or use interpolation for that purpose. Figure 8-8
shows the chart of the testing results. Both the actual and predicted charts overlap.

280

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

1600.00 —

1400.00 —

1200.00 —

| | | | I | I I | I |
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

day

Figure 8-8. Chart of the test results

Both charts are practically identical and overlap each other.

Digging Deeper

Neural network backpropagation is considered a universal function approximation
mechanism. However, there is a strict limitation for the type of functions that neural
networks are able to approximate: the functions must be continuous (the universal
approximation theorem).

Let's discuss what happens when the network attempts to approximate a
noncontinuous function. To research this question, you use a small noncontinuous
function that is given by its values at 20 points. These points surround the point of a
rapidly changing function pattern. Figure 8-9 shows the chart.

281

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

1500.00 —

1400.00 —

1300.00 —

1200.00 —

1100.00 —

1000.00 —

y=1(x)

900.00 —

800.00 —

700.00 —

600.00 —

500.00 —

I I | | I | | | I I

53400 536.00 538.00 540.00 542,00 544.00 546.00 548.00 550.00 552.00
X

Figure 8-9. Chart of the function with the rapidly changing pattern

Table 8-8 shows the function values at 20 points.

Table 8-8. Function Values

X Point Function Value

533 1282.71
534 1362.93
535 1388.91
536 1469.25
537 1394.46
538 1366.42
539 1498.58
540 1100
(continued)

282

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Table 8-8. (continued)

X Point Function Value

541 980

542 900

543 600

544 500

545 1436.51
546 1429.4
547 1314.95
548 1320.28
549 1366.01
550 1239.94
551 1160.33
552 1249.46
553 1255.82

This file is normalized before being processed. Figure 8-10 shows the network
architecture used for approximating this function.

283

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Input Layer Hidden Layer Output Layer

B B,

Figure 8-10. Network architecture

Executing the training process shows the following results:

— The maximum error percent (the maximum percent of the difference between the
actual and predicted function values) is greater than 130.06 percent.

— The average error percent (the average percent of the difference between the
actual and predicted function values) is greater than 16.25 percent.

Figure 8-11 shows the chart of the processing results.

284

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

| | | | | | | | | |

53400 536.00 53800 540.00 542,00 544.00 546.00 548.00 550.00 552.00
X

* Actual data
Predict data

Figure 8-11. Chart of the processing results

The goal is to understand what happens during this noncontinuous function
approximation process that leads to such poor results. To research this, you will calculate
the forward pass result (the error) for each record. The calculation for the forward pass is
done using Equations 8-1 through 8-5.

Neuron H,
Z' =W.,'I +B'1 T
H, =0 (Zi)
Neuron H,
Z,=W, ', +B/1 -2)
H,=0(Z})
Neuron H;
Z,=W, "l +B1 63
H,=0(Z})
285

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

These calculations give you output from neurons H1, H2, and H3. Those values are
used when processing neurons in the next layer (in this case, the output layer).
See Equation 8-4 for neuron O,

Z?=W2'H,+ W/ 'H, + W.3'H, +B,"1

8-4
0,=0 (Z‘,2) &4
Equation 8-5 shows the error function.
E=0.5'(Actual ValueforRecord 0,)’ (8-5)

In Equations 8-1 through 8-3, ¢ is the activation function, W is the weight, and B is
the bias.
Table 8-9 shows the calculated error for each record for the first forward pass.

Table 8-9. Record Errors for the First Pass

Day Function Value
-0.76 -0.410177778
-0.68 -0.053644444
-0.6 0.061822222
-0.52 0.418888889
-0.44 0.086488889 Max 0.202629155
-0.36 -0.038133333 Min 0.156038965
-0.28 0.549244444
-0.2 -1.222222222 Difference Percent 29.86
-0.12 -1.755555556
-0.04 211111111
0.04 -3.444444444
0.12 -3.888888889
0.2 0.273377778
(continued)
286

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUOUS FUNCTIONS

Table 8-9. (continued)

Day Function Value
0.28 0.241777778
0.36 -0.266888889
0.44 -0.2432

0.52 -0.039955556
0.6 -0.600266667
0.68 -0.954088889
0.76 -0.557955556
0.84 -0.529688889

The difference between the maximum and minimum error values for all records is
very large and is about 30 percent. That’s where the problem exists. When all records
are processed, this point is the epoch. At that point, the network calculates the average
error (for all processed errors in the epoch) and then processes the backpropagation
step to redistribute the average error among all neurons in the output and hidden layers,
adjusting their weights and bias values.

The calculated errors for all records depend on the initial (randomly assigned)
weight/bias parameters set for this first pass. When the function contains continuous
(monotone) function values that are gradually changed in an orderly way, the errors
calculated for each record based on the initial weight/bias values are close enough,
and the average error is close to the error calculated for each record. However, when
the function is noncontinuous, its pattern rapidly changes at some points. That leads to
the situation when the randomly selected initial weight/bias values are not good for all
records, leading to wide differences between record errors.

Next, the backpropagation adjusts the initial weight/bias values of the neurons, but
the problem continues to exist: those adjusted values are not good for all records that
belong to a different function pattern (topology).

Tip The micro-batch method requires more calculations than the conventional
way of network processing, so it should be used only when the conventional
method is unable to deliver good approximation results.

287

Dy Profl Engr Mr Santosh Kumar

CHAPTER 8 APPROXIMATING NONCONTINUQUS FUNCTIONS

Summary

Neural network approximation of noncontinuous functions is a difficult task for

neural networks. It is practically impossible to obtain a good-quality approximation

for such functions. This chapter introduced the micro-batch method, which is able to
approximate any noncontinuous function with high-precision results. The next chapter
shows how the micro-batch method substantially improves the approximation results
for continuous functions with complex topologies.

288

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9

Approximating
Continuous Functions
with Complex Topology

This chapter shows that the micro-batch method substantially improves the
approximation results of continuous functions with complex topologies.

Example 5a: Approximation of a Continuous
Function with Complex Topology Using
the Conventional Network Process

Figure 9-1 shows one such function. The function has the following formula:
y= \/e*sm(m' . However, let’s pretend that the function formula is unknown and that

the function is given to you by its values at certain points.

289
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_9

D¥ Piold Ellr:;r f Saniosh Kumar

CHAPTER9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

150 —

1.00 120 140

180 200 220 240 260 280 300 320 340 360 380 400

X

Figure 9-1. Chart of the continuous function with a complicated topology

Again, let’s first attempt to approximate this function using the conventional neural
network process. Table 9-1 shows a fragment of the training data set.

Table 9-1. Fragment of the Training Data Set

Point x Function Value

1 0.81432914

1.0003 0.814632027

1.0006 0.814935228

1.0009 0.815238744

1.0012 0.815542575
(continued)

290

D¥ Piold E|||:_;r f Saniosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Table 9-1. (continued)

Point x Function Value
1.0015 0.815846721
1.0018 0.816151183
1.0021 0.816455961
1.0024 0.816761055
1.0027 0.817066464
1.003 0.817372191
1.0033 0.817678233
1.0036 0.817984593
1.0039 0.818291269
1.0042 0.818598262

Table 9-2 shows a fragment of the testing data set.

Table 9-2. Fragment of the Testing Data Set

Point x Point y

1.000015 0.814344277
1.000315 0.814647179
1.000615 0.814950396
1.000915 0.815253928
1.001215 0.815557774
1.001515 0.815861937
1.001815 0.816166415
1.002115 0.816471208
1.002415 0.816776318
1.002715 0.817081743

(continued)

291

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Table 9-2. (continued)

Point x Pointy
1.003015 0.817387485
1.003315 0.817693544
1.003615 0.817999919
1.003915 0.818306611
1.004215 0.81861362

Both the training and testing data sets have been normalized before processing.

Network Architecture for Example 5a

Figure 9-2 shows the network architecture.

Input Hidden Layers Output
Layer Layer

f\

\4><7 \/

w%&gﬁgﬁ

/
&

Figure 9-2. Network architecture

Both the training and testing data sets have been normalized.

292

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Program Code for Example 5a

Listing 9-1 shows the program code. The code shows the conventional method for neural
network processing, which approximates the function with complex topology (shown

in Figure 9-1). Like with the conventional neural network processing shown in previous
chapters, you first train the network.

That includes normalizing the input data on the interval [-1, 1] and then
approximating the function at the training points. Next, in the testing mode, you
calculate (predict) the function values at the points not used during the network training.
Finally, you calculate the difference between the actual function values (known to you)
and the predicted values. I will show the difference between the charts of the actual
values and the predicted values.

Listing 9-1. Program Code

// Approximation of the complex function using the conventional approach.
// The complex function values are given at 1000 points.

//

// The input file consists of records with two fields:

// Fieldl - xPoint value

// Field2 - Function value at the xPoint

//

// The input file is normalized.

package articleidi complexformula traditional;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;
293

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.localDate;
import java.time.Month;

import java.time.Zoneld;

import java.util.Arraylist;
import java.util.Calendar;
import java.util.Date;

import java.util.list;

import java.util.locale;

import java.util.Properties;

import org.encog.Encog;

import org.encog.engine.network.activation.ActivationTANH;
import org.encog.engine.network.activation.ActivationRelU;
import org.encog.ml.data.MLData;

import org.encog.ml.data.MLDataPair;

import org.encog.ml.data.MLDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDataCODEC;

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;
import org.knowm.xchart.XYChart;
import org.knowm.xchart.XYChartBuilder;

294

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

public class ArticleIDI ComplexFormula Traditional implements ExampleChart
<XYChart>
{

// Interval to normalize

static double Nh = 1;

static double N1 = -1;

// First column
static double minXPointDl
static double maxXPointDh

0.95;
4.05;

// Second column - target data
static double minTargetValueDl
static double maxTargetValueDh

0.60;
1.65;

static double doublePointNumber = 0.00;
static int intPointNumber = 0;

static InputStream input = null;

static double[] arrPrices = new double[2500];
static double normInputXPointValue = 0.00;
static double normPredictXPointValue = 0.00;
static double normTargetXPointValue = 0.00;
static double normDifferencePerc = 0.00;
static double returnCode = 0.00;

static double denormInputXPointValue = 0.00;

295

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

static double denormPredictXPointValue = 0.00;
static double denormTargetXPointValue = 0.00;
static double valueDifference = 0.00;
static int numberOfInputNeurons;
static int numberOfOutputNeurons;
static int numberOfRecordsInFile;
static String trainFileName;
static String priceFileName;
static String testFileName;
static String chartTrainFileName;
static String chartTestFileName;
static String networkFileName;
static int workingMode;
static String cvsSplitBy = ",";

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new ArraylList<Double>();

static XYChart Chart;

@0verride
public XYChart getChart()

|
// Create Chart

XYSeries series1 = Chart.addSeries("Actual data", xData, yData1);
XYSeries series2 = Chart.addSeries("Predict data", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLACK);
series2.setlLineColor(XChartSeriesColors.YELLOW);

seriesi.setMarkerColoxr(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.DASH DASH);

296

Dy Profl Engr Mr Santosh Kumar

try

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Configuration

// Set the mode the program should run
workingMode = 1; // Run the program in the training mode

if(workingMode == 1)
{
// Training mode
numberOfRecordsInFile = 10001;
trainFileName = "C:/Article To Publish/IGI_Global/Complex
Formula Calculate Train Norm.csv";
chartTrainFileName = "C:/Article To Publish/IGI_Global/Complex
Formula Chart Train Results";

else

// Testing mode
numberOfRecordsInFile = 10001;

testFileName = "C:/Article To Publish/IGI_Global/Complex
Formula Calculate Test Norm.csv";

chartTestFileName = "C:/Article To Publish/IGI Global/
ComplexFormula_Chart_Test Results";

}

// Common part of config data

networkFileName = "C:/Article To Publish/IGI_Global/Complex
Formula Saved Network File.csv";

numberOfInputNeurons = 1;

numberOfOutputNeurons = 1;

if(workingMode == 1)

{

// Training mode
File file1l = new File(chartTrainFileName);
File file2 = new File(networkFileName);

297

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

if(file1l.exists())
filei.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the error Code

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

else

{
// Test mode

loadAndTestNetwork();

}
catch (Throwable t)

{
t.printStackTrace();

System.exit(1);

}
finally

{
Encog.getInstance().shutdown();

}

Encog.getInstance().shutdown();
return Chart;

} // End of the method

// Load CSV to memory.
// @return The loaded dataset.

// 4+ttt

298

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.
// @param Command line arguments. No arguments are used.
// ============scssssssssssssosssossssssossssssosssssossoes
public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new ArticleIDI_ComplexFormula
Traditional();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

static public double trainValidateSaveNetwork()

{
// Load the training CSV file in memory

MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numbexOfInputNeurons, numberOf
OutputNeurons,
true,CSVFormat.ENGLISH,false);

// create a neural network
BasicNetwork network = new BasicNetwork();

299

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasicLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

//Train the neural network
final ResilientPropagation train = new ResilientPropagation
(network, trainingSet);

int epoch = 1;

do
{

train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());

epoch++;

if (epoch >= 6000 && network.calculateError(trainingSet) > 0.101)

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError() » 0.10);

300

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network) ;

System.out.println("Neural Network Results:");

double sumNormDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxNormDifferencePerc = 0.00;

int m = 0;

double stepValue = 0.00031;
double startingPoint = 1.00;
double xPoint = startingPoint - stepValue;

for(MLDataPair pair: trainingSet)

{
m++;
xPoint = xPoint + stepValue;

if(m == 0)
continue;

final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValue -Nh*minXPointDl + maxXPointDh *N1)/
(N1 - Nh);

301

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

}

XYSeries seriesi
XYSeries series2

denormTargetXPointValue =((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValue - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValue - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

valueDifference =
Math.abs(((denormTargetXPointValue - denormPredictXPointValue)/
denormTargetXPointValue)*100.00);

System.out.println ("xPoint = " + xPoint + " denormTargetXPoint

Value = " + denormTargetXPointValue + "denormPredictXPointValue = "
+ denormPredictXPointValue + " valueDifference = " +
valueDifference);

sumNoxrmDifferencePerc = sumNormDifferencePerc + valueDifference;

if (valueDifference > maxNormDifferencePerc)
maxNormDifferencePerc = valueDifference;

xData.add(xPoint);
yDatai.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

// End for pair loop

Chart.addSeries("Actual data", xData, yData1);
Chart.addSeries("Predict data", xData, yData2);

seriesi.setlLineColor(XChartSeriesColors.BLACK);
series2.setlLineColor(XChartSeriesColors.YELLOW);

seriesi.setMarkerColoxr(Color.BLACK);
series2.setMarkerColoxr(Color.WHITE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.DASH DASH);

302

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network);

System.out.println ("Train Network has been saved");

averNormDifferencePerc = sumNormDifferencePerc/(numberOfRecords

InFile-1);

System.out.println(" ");
System.out.println("maxErrorDifferencePerc = " + maxNormDifference
Perc + " averErrorDifferencePerc = " + averNormDifferencePerc);

returnCode = 0.00;
return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

303

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictPercent = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputXPointValueFromRecord = 0.00;
double normTargetXPointValueFromRecord = 0.00;
double normPredictXPointValueFromRecord = 0.00;

BasicNetwork network;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory

MLDataSet testingSet =

loadCSV2Memory(testFileName, numberOfInputNeurons,numberOfOutput
Neurons,true,CSVFormat.ENGLISH,false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject(new File(network
FileName));

int i = - 1; // Index of the current record
double stepValue = 0.000298;

double startingPoint = 1.01;

double xPoint = startingPoint - stepValue;

for (MLDataPair pair: testingSet)
{

i++;
xPoint = xPoint + stepValue;

304

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputXPointValueFromRecord = inputData.getData(0);
normTargetXPointValueFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValueFromRecord - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValueFromRecord - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

targetToPredictPercent = Math.abs((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue*100);

System.out.println("xPoint = " + xPoint + " denormTargetX
PointValue = " + denormTargetXPointValue + " denormPredictX
PointValue = " + denormPredictXPointValue +" targetToPredict

Percent = " + targetToPredictPercent);

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredict
Percent;

// Populate chart elements
xData.add(xPoint);
yData1l.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop

305

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Print the max and average results
System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/(numberOfRecordsInFile-1);

System.out.println("maxErrorPerc = " + maxGlobalResultDiff);
System.out.println("averErrorPerc = " + averGlobalResultDiff);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual", xData, yDatal);
XYSeries series2 = Chart.addSeries("Predicted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLACK);
series2.setlineColor(XChartSeriesColors.YELLOW);

seriesi.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setLineStyle(SeriesLines.DASH DASH);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for test records");

} // End of the method

} // End of the class

306

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Training Processing Results for Example 5a

Listing 9-2 shows the end fragment of the conventional network processing results.

Listing 9-2. The End Fragment of the Conventional Training Results

xPoint = 4.08605 TargetValue = 1.24795 PredictedValue
DifPerc = 7.12794

xPoint = 4.08636 TargetValue = 1.25699 PredictedValue = 1.16125
DifPerc = 7.61624

xPoint = 4.08667 TargetValue = 1.26602 PredictedValue = 1.16346
DifPerc = 8.10090

xPoint = 4.08698 TargetValue = 1.27504 PredictedValue = 1.16562
DifPerc = 8.58150

xPoint = 4.08729 TargetValue = 1.28404 PredictedValue = 1.16773
DifPerc = 9.05800

xPoint = 4.08760 TargetValue = 1.29303 PredictedValue = 1.16980
DifPerc = 9.53011

xPoint = 4.08791 TargetValue = 1.30199 PredictedValue = 1.17183
DifPerc = 9.99747

xPoint = 4.08822 TargetValue = 1.31093 PredictedValue = 1.17381
DifPerc = 10.4599

xPoint = 4.08853 TargetValue = 1.31984 PredictedValue = 1.17575
DifPerc = 10.9173

xPoint = 4.08884 TargetValue = 1.32871 PredictedValue = 1.17765
DifPerc = 11.3694

xPoint = 4.08915 TargetValue = 1.33755 PredictedValue = 1.17951
DifPerc = 11.8159

xPoint = 4.08946 TargetValue = 1.34635 PredictedValue = 1.18133
DifPerc = 12.25680

xPoint = 4.08978 TargetValue = 1.35510 PredictedValue = 1.18311
DifPerc = 12.69162

xPoint = 4.09008 TargetValue = 1.36380 PredictedValue = 1.18486
DifPerc = 13.12047

xPoint = 4.09039 TargetValue = 1.37244 PredictedValue = 1.18657
DifPerc = 13.54308

1.15899

307

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

xPoint = 4.09070 TargetValue = 1.38103 PredictedValue
DifPerc = 13.95931

xPoint = 4.09101 TargetValue = 1.38956 PredictedValue = 1.18999
DifPerc = 14.36898

xPoint = 4.09132 TargetValue = 1.39802 PredictedValue = 1.19151
DifPerc = 14.77197

xPoint = 4.09164 TargetValue = 1.40642 PredictedValue = 1.19309
DifPerc = 15.16812

xPoint = 4.09194 TargetValue = 1.41473 PredictedValue = 1.19464
DifPerc = 15.55732

xPoint = 4.09225 TargetValue = 1.42297 PredictedValue = 1.19616
DifPerc = 15.93942

xPoint = 4.09256 TargetValue = 1.43113 PredictedValue = 1.19765
DifPerc = 16.31432

xPoint = 4.09287 TargetValue = 1.43919 PredictedValue = 1.19911
DifPerc = 16.68189

xPoint = 4.09318 TargetValue = 1.44717 PredictedValue = 1.20054
DifPerc = 17.04203

xPoint = 4.09349 TargetValue = 1.45505 PredictedValue = 1.20195
DifPerc = 17.39463

xPoint = 4.09380 TargetValue = 1.46283 PredictedValue = 1.20333
DifPerc = 17.73960

xPoint = 4.09411 TargetValue = 1.47051 PredictedValue = 1.20469
DifPerc = 18.07683

xPoint = 4.09442 TargetValue = 1.47808 PredictedValue = 1.20602
DifPerc = 18.40624

xPoint = 4.09473 TargetValue = 1.48553 PredictedValue = 1.20732
DifPerc = 18.72775

xPoint = 4.09504 TargetValue = 1.49287 PredictedValue = 1.20861
DifPerc = 19.04127

xPoint = 4.09535 TargetValue = 1.50009 PredictedValue = 1.20987
DifPerc = 19.34671

xPoint = 4.09566 TargetValue = 1.50718 PredictedValue = 1.21111
DifPerc = 19.64402

xPoint = 4.09597 TargetValue = 1.51414 PredictedValue = 1.21232
DifPerc = 19.93312

308

]
[N

.18825

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

xPoint = 4.09628 TargetValue
DifPerc = 20.21393

xPoint = 4.09659 TargetValue = 1.52766 PredictedvValue = 1.21469
DifPerc = 20.48640

xPoint = 4.09690 TargetValue = 1.53420 PredictedValue = 1.21585
DifPerc = 20.75045

xPoint = 4.09721 TargetValue = 1.54060 PredictedValue = 1.21699
DifPerc = 21.00605

xPoint = 4.09752 TargetValue = 1.54686 PredictedValue = 1.21810
DifPerc = 21.25312

xPoint = 4.09783 TargetValue = 1.55296 PredictedValue = 1.21920
DifPerc = 21.49161

xPoint = 4.09814 TargetValue = 1.55890 PredictedValue = 1.22028
DifPerc = 21.72147

xPoint = 4.09845 TargetValue = 1.56468 PredictedValue = 1.22135
DifPerc = 21.94265

xPoint = 4.09876 TargetValue = 1.57030 PredictedValue = 1.22239
DifPerc = 22.15511

xPoint = 4.09907 TargetValue = 1.57574 PredictedValue = 1.22342
DifPerc = 22.35878

xPoint = 4.09938 TargetValue = 1.58101 PredictedValue = 1.22444
DifPerc = 22.55363

xPoint = 4.09969 TargetValue = 1.58611 PredictedValue = 1.22544
DifPerc = 22.73963

1.52097 PredictedValue

1.21352

maxErrorPerc = 86.08183780343387
averErrorPerc = 10.116005438206885

With the conventional process, the approximation results are as follows:
o The maximum error percent exceeds 86.08 percent.
« The average error percent exceeds 10. 11 percent.

Figure 9-3 shows the chart of the training approximation results using conventional
network processing.

309

Dy Profl Engr Mr Santosh Kumar

CHAPTER9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

160 — /\
- | N, |

130 — 3 =+

x0T
-
& 1LI0 —

il / = ;

1.00 1.20 1.40 1.60 180 200 220 240 260 280 300 320 340 360 380 400

+ Actual
Predicted

Figure 9-3. Chart of the training approximation results using conventional
network processing

Obviously, with such a large difference between the actual and predicted values,

such an approximation is useless.

Approximation of a Continuous Function
with Complex Topology Using the Micro-Batch
Method

Now, let’s approximate this function using the micro-batch method. Again, the
normalized training data set is broken into a set of training micro-batch files, and they
then become the input to the training process. Listing 9-3 shows the ending fragment of
the training processing results (using the macro-batch method) after execution.

310

D¥ Piold Ellr:;r f Saniosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Listing 9-3. Ending Fragment of the Training Processing Results (Using the
Macro-Batch Method)

DayNumber = 9950 TargetValue
DiffPerc = 4.66352E-6
DayNumber = 9951 TargetValue = 1.20277 PredictedValue = 1.20277
DiffPerc = 5.30417E-6

DayNumber = 9952 TargetValue = 1.21180 PredictedValue = 1.21180
DiffPerc = 4.79291E-6

DayNumber = 9953 TargetValue = 1.22083 PredictedValue = 1.22083
DiffPerc = 5.03070E-6

DayNumber = 9954 TargetValue = 1.22987 PredictedValue = 1.22987
DiffPerc = 3.79647E-6

DayNumber = 9955 TargetValue = 1.23891 PredictedValue = 1.23891
DiffPerc = 8.06431E-6

DayNumber = 9956 TargetValue = 1.24795 PredictedValue = 1.24795
DiffPerc = 7.19851E-6

DayNumber = 9957 TargetValue = 1.25699 PredictedValue = 1.25699
DiffPerc = 4.57148E-6

DayNumber = 9958 TargetValue = 1.26602 PredictedValue = 1.26602
DiffPerc = 5.88300E-6

DayNumber = 9959 TargetValue = 1.27504 PredictedValue = 1.27504
DiffPerc = 3.02448E-6

DayNumber = 9960 TargetValue = 1.28404 PredictedValue = 1.28404
DiffPerc = 7.04155E-6

DayNumber = 9961 TargetValue = 1.29303 PredictedValue = 1.29303
DiffPerc = 8.62206E-6

DayNumber = 9962 TargetValue = 1.30199 PredictedValue = 1.30199
DiffPerc = 9.16473E-8

DayNumber = 9963 TargetValue = 1.31093 PredictedValue = 1.31093
DiffPerc = 1.89459E-6

DayNumber = 9964 TargetValue = 1.31984 PredictedValue = 1.31984
DiffPerc = 4.16695E-6

DayNumber = 9965 TargetValue = 1.32871 PredictedValue = 1.32871
DiffPerc = 8.68118E-6

1.19376 PredictedValue = 1.19376

311

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 9966 TargetValue = 1.33755 PredictedValue
DiffPerc = 4.55866E-6

DayNumber = 9967 TargetValue = 1.34635 PredictedValue = 1.34635
DiffPerc = 6.67697E-6

DayNumber = 9968 TargetValue = 1.35510 PredictedValue = 1.35510
DiffPerc = 4.80264E-6

DayNumber = 9969 TargetValue = 1.36378 PredictedValue = 1.36380
DiffPerc = 8.58688E-7

DayNumber = 9970 TargetValue = 1.37244 PredictedValue = 1.37245
DiffPerc = 5.19317E-6

DayNumber = 9971 TargetValue = 1.38103 PredictedValue = 1.38104
DiffPerc = 7.11052E-6

DayNumber = 9972 TargetValue = 1.38956 PredictedValue = 1.38956
DiffPerc = 5.15382E-6

DayNumber = 9973 TargetValue = 1.39802 PredictedValue = 1.39802
DiffPerc = 5.90734E-6

DayNumber = 9974 TargetValue = 1.40642 PredictedValue = 1.40642
DiffPerc = 6.20744E-7

DayNumber = 9975 TargetValue = 1.41473 PredictedValue = 1.41473
DiffPerc = 5.67234E-7

DayNumber = 9976 TargetValue = 1.42297 PredictedValue = 1.42297
DiffPerc = 5.54862E-6

DayNumber = 9977 TargetValue = 1.43113 PredictedValue = 1.43113
DiffPerc = 3.28318E-6

DayNumber = 9978 TargetValue = 1.43919 PredictedValue = 1.43919
DiffPerc = 7.84136E-6

DayNumber = 9979 TargetValue = 1.44717 PredictedValue = 1.44717
DiffPerc = 6.51767E-6

DayNumber = 9980 TargetValue = 1.45505 PredictedValue = 1.45505
DiffPerc = 6.59220E-6

DayNumber = 9981 TargetValue = 1.46283 PredictedValue = 1.46283
DiffPerc = 9.08060E-7

DayNumber = 9982 TargetValue = 1.47051 PredictedValue = 1.47051
DiffPerc = 8.59549E-6

DayNumber = 9983 TargetValue = 1.47808 PredictedValue = 1.47808
DiffPerc = 5.49575E-7

312

]
[N

33755

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 9984 TargetValue = 1.48553 PredictedValue
DiffPerc = 1.07879E-6

DayNumber = 9985 TargetValue = 1.49287 PredictedValue = 1.49287
DiffPerc = 2.22734E-6

DayNumber = 9986 TargetValue = 1.50009 PredictedValue = 1.50009
DiffPerc = 1.28405E-6

DayNumber = 9987 TargetValue = 1.50718 PredictedValue = 1.50718
DiffPerc = 8.88272E-6

DayNumber = 9988 TargetValue = 1.51414 PredictedValue = 1.51414
DiffPerc = 4.91930E-6

DayNumber = 9989 TargetValue = 1.52097 PredictedValue = 1.52097
DiffPerc = 3.46714E-6

DayNumber = 9990 TargetValue = 1.52766 PredictedValue = 1.52766
DiffPerc = 7.67496E-6

DayNumber = 9991 TargetValue = 1.53420 PredictedValue = 1.53420
DiffPerc = 4.67918E-6

DayNumber = 9992 TargetValue = 1.54061 PredictedValue = 1.54061
DiffPerc = 2.20484E-6

DayNumber = 9993 TargetValue = 1.54686 PredictedValue = 1.54686
DiffPerc = 7.42466E-6

DayNumber = 9994 TargetValue = 1.55296 PredictedValue = 1.55296
DiffPerc = 3.86183E-6

DayNumber = 9995 TargetValue = 1.55890 PredictedValue = 1.55890
DiffPerc = 6.34568E-7

DayNumber = 9996 TargetValue = 1.56468 PredictedValue = 1.56468
DiffPerc = 6.23860E-6

DayNumber = 9997 TargetValue = 1.57029 PredictedValue = 1.57029
DiffPerc = 3.66380E-7

DayNumber = 9998 TargetValue = 1.57574 PredictedValue = 1.57574
DiffPerc = 4.45560E-6

DayNumber = 9999 TargetValue = 1.58101 PredictedValue = 1.58101
DiffPerc = 6.19952E-6

DayNumber = 10000 TargetValue = 1.5861 PredictedValue = 1.58611
DiffPerc = 1.34336E-6

1.48553

maxGlobalResultDiff = 1.3433567671366473E-6

averGlobalResultDiff = 2.686713534273295E-10
313

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

The training processing results (that uses the micro-batch method) are as follows:
1. The maximum error is less than 0.00000134 percent.
2. The average error is less than 0.000000000269 percent.

Figure 9-4 shows the chart of the training approximation results (using the micro-
batch method). Both charts are practically equal (actual values are black, and predicted
values are white).

10 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
X

* Actual data
Predict data

Figure 9-4. Chart of the training approximation results (using the micro-batch
method)

Testing Processing for Example 5a

Like with the normalization of the training data set, the normalized testing data set is
broken into a set of micro-batch files that are now the input to the testing process.

314

Dr Prof Engr Mr Saniosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Listing 9-4 shows the program code.

Listing 9-4. Program Code

// Approximation of continuous function with complex topology

// using the micro-batch method. The input is the normalized set of
// micro-batch files. Each micro-batch includes a single day record
// that contains two fields:

// - normDayValue

// - normTargetValue

//

// The number of inputlLayer neurons is 1

// The number of outputlLayer neurons is 1

package articleigi complexformula microbatchest;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;

import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.localDate;

315

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import java.time.Month;
import java.time.Zoneld;
import java.util.Arraylist;
import java.util.Calendar;
import java.util.Date;
import java.util.list;
import java.util.locale;
import java.util.Properties;

import org.encog.Encog;

import org.encog.engine.network.activation.ActivationTANH;
import org.encog.engine.network.activation.ActivationRelU;
import org.encog.ml.data.MLData;

import org.encog.ml.data.MLDataPair;

import org.encog.ml.data.MLDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDataCODEC;

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;

316

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import org.knowm.xchart.QuickChart;
import org.knowm.xchart.SwingWrapper;

public class ArticleIGI_ComplexFormula Microbatchest implements
ExampleChart<XYChart>
{

// Normalization parameters

// Normalizing interval
static double Nh = 1;
static double N1 = -1;

// First 1

static double minXPointDl = 0.95;
static double maxXPointDh = 4.05;

// Column 2

static double minTargetValueDl = 0.60;
static double maxTargetValueDh = 1.65;

static String cvsSplitBy = ",";
static Properties prop = null;

static String strWorkingMode;

static String strNumberOfBatchesToProcess;
static String strTrainFileNameBase;

static String strTestFileNameBase;

static String strSaveTrainNetworkFileBase;
static String strSaveTestNetworkFileBase;
static String strValidateFileName;

static String strTrainChartFileName;
static String strTestChartFileName;

static String strFunctValueTrainFile;
static String strFunctValueTestFile;
static int intDayNumber;

static double doubleDayNumber;

static int intWorkingMode;

static int numberOfTrainBatchesToProcess;
static int numberOfTestBatchesToProcess;

317

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

static int intNumberOfRecordsInTrainFile;
static int intNumberOfRecordsInTestFile;
static int intNumberOfRowsInBatches;
static int intInputNeuronNumber;

static int intOutputNeuronNumber;

static String strOutputFileName;

static String strSaveNetworkFileName;
static String strDaysTrainFileName;
static XYChart Chart;

static String iString;

static double inputFunctValueFromFile;
static double targetToPredictFunctValueDiff;
static int[] returnCodes new int[3];

static List<Double> xData = new ArrayList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new ArraylList<Double>();

static double[] DaysyearDayTraining = new double[10200];

static String[] stxrTrainingFileNames = new String[10200];

static String[] strTestingFileNames = new String[10200];

static String[] strSaveTrainNetworkFileNames = new String[10200];
static double[] linkToSaveNetworkDayKeys = new double[10200];

static double[] linkToSaveNetworkTargetFunctValueKeys = new double[10200];
static double[] arrTrainFunctValues = new double[10200];

static double[] arrTestFunctValues = new double[10200];

@Override
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("day").yAxisTitle("y=f(day)").build();

// Customize Chart
Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

318

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColor
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColor(new Color (255, 255, 255));

//Chart.getStyler().setPlotBackgroundColor(ChartColor.
getAWTColor (ChartColoxr.WHITE));
//Chart.getStyler().setPlotCridLinesColor(new Coloxr(0, 0, 0));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
//Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setLegendBackgroundColor(Color.WHITE);
//Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartFontColor(Color.BLACK);

Chart.getStyler().setChartTitleBoxBackgroundColor (new Color(0, 222, 0));

Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitlevisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));

//Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendPosition(LegendPosition.OutsideS);
Chart.getStyler().setLegendSeriesLineLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Config data

Dy Profl Engr Mr Santosh Kumar

319

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

320

// Set the mode the program should run
intWorkingMode = 1; // Training mode

if (intWorkingMode == 1)
{
numberOfTrainBatchesToProcess = 10000;
numberOfTestBatchesToProcess = 9999;
intNumberOfRowsInBatches = 1;
intInputNeuronNumber = 1;
intOutputNeuronNumber = 1;
strTrainFileNameBase = "C:/Article To_Publish/IGI_Global/Work Files_
ComplexFormula/ComplexFormula Train Norm Batch ";
strTestFileNameBase = "C:/Article To Publish/IGI_Global/Work Files
ComplexFormula/ComplexFormula Test Norm Batch ";
strSaveTrainNetworkFileBase =
"C:/Article To Publish/IGI Global/Work Files ComplexFormula/Save_
Network MicroBatch ";
strTrainChartFileName =
"C:/Article _To Publish/IGI Global/Chart Microbatch Train Results.jpg";
strTestChartFileName =
"C:/Article To Publish/IGI Global/Chart Microbatch Test MicroBatch.jpg";

// Generate training batch file names and the corresponding
// SaveNetwork file names

intDayNumber = -1; // Day number for the chart

for (int i = 0; i < numberOfTrainBatchesToProcess; i++)

{

intDayNumber++;

iString = Integer.toString(intDayNumber);

strOutputFileName = strTrainFileNameBase + iString + ".csv";
strSaveNetworkFileName = strSaveTrainNetworkFileBase + iString + ".csv";

strTrainingFileNames[intDayNumber] = strOutputFileName;
strSaveTrainNetworkFileNames[intDayNumber] = strSaveNetworkFileName;

Dy Profl Engr Mr Santosh Kumar

CHAPTER9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY
} // End the FOR loop

// Build the array linkToSaveNetworkFunctValueDiffKeys
String templine;

double tempNormFunctValueDiff = 0.00;

double tempNormFunctValueDiffPerc = 0.00;

double tempNormTargetFunctValueDiffPerc = 0.00;

String[] tempWorkFields;

try

{
intDayNumber = -1; // Day number for the chart

for (int m = 0; m < numberOfTrainBatchesToProcess; m++)

{

intDayNumber++;

BufferedReader br3 = new BufferedReader(new
FileReader(stxTrainingFileNames[intDayNumber]));
tempLine = br3.readlLine();

// Skip the label record and zero batch record
tempLine = br3.readline();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

tempNormFunctValueDiffPerc = Double.parseDouble(tempWork
Fields[0]);

tempNormTargetFunctValueDiffPerc = Double.parseDouble
(tempWorkFields[1]);

linkToSaveNetworkDayKeys[intDayNumber] = tempNormFunctValue

DiffPerc;

linkToSaveNetworkTargetFunctValueKeys[intDayNumber] =
tempNormTargetFunctValueDiffPerc;

} // End the FOR loop

321

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

else

{
// Testing mode

// Generate testing batch file names
intDayNumber = -1;

for (int i = 0; i < numberOfTestBatchesToProcess; i++)

{

intDayNumber++;
iString = Integer.toString(intDayNumber);

// Construct the testing batch names
strOutputFileName = strTestFileNameBase + iString + ".csv";
strTestingFileNames[intDayNumber] = strOutputFileName;

} // End the FOR loop
} // End of IF

} // End for try
catch (IOException io1)

{
iol.printStackTrace();
System.exit(1);

}

if(intWorkingMode == 1)
{

// Training mode

// Load, train, and test Function Values file in memory
loadTrainFunctValueFileInMemory();

int paramErrorCode;
int paramBatchNumber;
int paramR;

int paramDayNumber;
int paramS;

322

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

File file1 = new File(strTrainChartFileName);

if(filel.exists())
filei.delete();

returnCodes[0] = 0; // Clear the error Code
returnCodes[1] = 0; // Set the initial batch Number to 0;
returnCodes[2] = 0; // Day number;

do
{
paramErrorCode = returnCodes[0];
paramBatchNumber = returnCodes[1];
paramDayNumber = returnCodes[2];

returnCodes =
trainBatches(paramErrorCode, paramBatchNumber , paramDayNumber);
} while (returnCodes[0] > 0);

} // End the train logic
else

{
// Testing mode

File file2 = new File(strTestChartFileName);
if(file2.exists())
file2.delete();

loadAndTestNetwork();

// End the test logic
}

Encog.getInstance().shutdown();
//System.exit(0);
return Chart;

} // End of method

323

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Load CSV to memory.
// @return The loaded dataset.
// =======s=============sss===s=sss==SsssssssSssssSsSSssss
public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, inpu, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.

// @param Command line arguments. No arguments are used.
/| ========z==z=z=====z====z===z=z===========================z==
public static void main(String[] args)

{

ExampleChart<XYChart> exampleChart = new ArticleIGI ComplexFormula
Microbatchest();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

// This method trains batches as individual networkis
// saving them in separate trained datasets

static public int[] trainBatches(int paramErrorCode, int paramBatchNumber,
int paramDayNumber)

{

int rBatchNumber;
double targetToPredictFunctValueDiff = 0;

324

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

double maxGlobalResultDiff = 0.00;
double averGlobalResultDiff = 0.00;
double sumGlobalResultDiff = 0.00;

double normInputFunctValueDiffPercFromRecord = 0.00;
double normTargetFunctValuel = 0.00;

double normPredictFunctValuel = 0.00;

double denormInputDayFromRecordi;

double denormInputFunctValueDiffPercFromRecord;
double denormTargetFunctValuel = 0.00;

double denormAverPredictFunctValuell = 0.00;

BasicNetwork networki = new BasicNetwork();

// Input
network1

layer
.addLayer (new

// Hidden layer.

networki

networkl.
networki.
network1.
network1.

network1

networki.

// Output

.addLayer (new
addLayer (new
addLayer(new
addLayer (new
addLayer(new
.addLayer(new
addLayer (new

layer

BasicLayer(null,true, intInputNeuronNumber));

BasicLayer(new ActivationTANH(),true,7));
BasicLayer(new ActivationTANH(),true,7));
BasicLayer(new ActivationTANH(),true,7));
BasicLayer(new ActivationTANH(),true,7));
BasiclLayer(new ActivationTANH(),true,7));
BasiclLayer(new ActivationTANH(),true,7));
BasiclLayer(new ActivationTANH(),true,7));

network1.addLayer(new Basiclayer(new ActivationTANH(),false, intOutput
NeuronNumber));

networki.getStructure().finalizeStructure();
networki.reset();

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Loop over batches
intDayNumber = paramDayNumber; // Day number for the chart

325

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

326

for (rBatchNumber = paramBatchNumber; rBatchNumber < numberOfTrain
BatchesToProcess; rBatchNumber++)

{

intDayNumber++;

// Load the training file in memory

MLDataSet trainingSet =
loadCSV2Memory (stxTrainingFileNames[rBatchNumber], intInput
NeuronNumber , intOutputNeuronNumber,true,CSVFormat.ENGLISH,false);

// train the neural networki
ResilientPropagation train = new ResilientPropagation(networki,
trainingSet);

int epoch = 1;

do
{

train.iteration();
epoch++;

for (MLDataPair pairiil: trainingSet)
{
MLData inputDatal = pairii.getInput();
MLData actualData1l = pairii.getIdeal();
MLData predictDatal = networki.compute(inputDatal);

// These values are Normalized as the whole input is
normInputFunctValueDiffPercFromRecord = inputDatal.
getData(0);

normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatail.getData(0);

denormInputFunctValueDiffPercFromRecord =((minXPointDl -
maxXPointDh)*normInputFunctValueDiffPercFromRecord - Nh*
minXPointD1l + maxXPointDh*N1)/(N1 - Nh);

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

denormTargetFunctValue1l = ((minTargetValueDl - maxTarget
ValueDh)*normTargetFunctValuel - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormAverPredictFunctValue11l =((minTargetValueDl - maxTarget
ValueDh)*normPredictFunctValuel - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

//inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTarget
FunctValuel - denormAverPredictFunctValuel1)/denormTarget
FunctValue1)*100;

}

if (epoch >= 1000 && targetToPredictFunctValueDiff > 0.0000091)
{
returnCodes[0]
returnCodes[1]
returnCodes[2]

15
rBatchNumber;
intDayNumber-1;

I

return returnCodes;

}
} while(targetToPredictFunctValueDiff > 0.000009);

// This batch is optimized

// Save the networki for the cur rend batch
EncogDirectoryPersistence.saveObject(new
File(strSaveTrainNetworkFileNames|[rBatchNumber]),network1);

// Get the results after the networki optimization
iff 1 = = 13

for (MLDataPair pairi: trainingSet)

{
it+;
MLData inputDatal = pairi.getInput();

MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networkl.compute(inputDatail);

327

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

328

// These values are Normalized as the whole input is
normInputFunctValueDiffPercFromRecord = inputDatail.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatail.getData(0);

// De-normalize the obtained values
denormInputFunctValueDiffPercFromRecord =((minXPointDl - maxXPointDh)*
normInputFunctValueDiffPercFromRecord - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormTargetFunctValue1l = ((minTargetValueDl - maxTargetValueDh)*
normTargetFunctValuel - Nh*minTargetValueDl + maxTargetValueDh*N1)/
(N1 - Nh);

denormAverPredictFunctValue11l =((minTargetValueDl - maxTargetValueDh)*
normPredictFunctValuel - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

//inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denoxrmTargetFunctValuel -
denormAverPredictFunctValue11)/denormTargetFunctValue1)*100;

System.out.println("intDayNumber = " + intDayNumber + " target
FunctionValue = " +
denormTargetFunctValue1l + " predictFunctionValue = " +

denormAverPredictFunctValue11l +
ToPredictFunctValueDiff);

valurDiff = " + target

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
maxGlobalResultDiff =targetToPredictFunctValueDiff;

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunct
ValueDiff;

// Populate chart elements

//doubleDayNumber = (double) rBatchNumber+1;
xData.add(denormInputFunctValueDiffPercFromRecord);
yData1.add(denormTargetFunctValue1);
yData2.add(denormAverPredictFunctValuel1);

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY
} // End for FunctValue pairi loop
} // End of the loop over batches

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredictFunct
ValueDiff;

averGlobalResultDiff = sumGlobalResultDiff/numberOfTrainBatchesTo
Process;

// Print the max and average results

System.out.println(" ");

System.out.println(" ");

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

Chart.addSeries("Actual data", xData, yData1);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesi
XYSeries series2

seriesl.setlLineColor(XChartSeriesColors.BLACK);
series2.setlLineColor(XChartSeriesColors.YELLOW);

seriesi.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.DASH DASH);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

returnCodes[0] = 0;

329

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

returnCodes[1] = 0;
returnCodes[2] = 0;

return returnCodes;

} // End of method

// Load the previously saved trained networkil and tests it by
// processing the Test record

static public void loadAndTestNetwork()
{

System.out.println("Testing the networkis results");

List<Double> xData = new ArrayList<Double>();
List<Double> yData1
List<Double> yData2

new ArraylList<Double>();
new ArraylList<Double>();

double targetToPredictFunctValueDiff = 0;
double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;
double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputDayFromRecordl = 0.00;
double normTargetFunctValuel = 0.00;

double normPredictFunctValuel = 0.00;
double denormInputDayFromRecordl = 0.00;
double denormTargetFunctValuel = 0.00;
double denormAverPredictFunctValuel = 0.00;

double normInputDayFromRecord2 = 0.00;
double normTargetFunctValue2 = 0.00;

double normPredictFunctValue2 = 0.00;
double denormInputDayFromRecord2 = 0.00;
double denormTargetFunctValue2 = 0.00;
double denormAverPredictFunctValue2 = 0.00;

330

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

double normInputDayFromTestRecord = 0.00;
double denormInputDayFromTestRecord = 0.00;
double denormAverPredictFunctValue = 0.00;

double denormTargetFunctValueFromTestRecord = 0.00;

String templine;

String[] tempWorkFields;

double dayKeyFromTestRecord = 0.00;

double targetFunctValueFromTestRecord = 0.00;
double r1 = 0.00;

double r2 = 0.00;

BufferedReader br4;

BasicNetwork networki;
BasicNetwork network2;

int k1 = 0;

int k3 = 0;
try

{

// Process testing records

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

for (ki = 0; k1 < numberOfTestBatchesToProcess; ki++)

{
/7 if(k1 == 9998)
// ki = ki;

// Read the corresponding test micro-batch file.
br4 = new BufferedReader(new FileReader(strTestingFileNames[k1]));
tempLine = br4.readlLine();

// Skip the label record
tempLine = br4.readlLine();

331

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Break the line using comma as separator
tempWorkFields = templine.split(cvsSplitBy);

dayKeyFromTestRecord = Double.parseDouble(tempWorkFields[0]);
targetFunctValueFromTestRecord = Double.parseDouble
(tempWorkFields[1]);

// De-normalize the dayKeyFromTestRecord
denormInputDayFromTestRecord = ((minXPointDl - maxXPointDh)*
dayKeyFromTestRecord - Nh*minXPointDl + maxXPointDh*N1)/

(N1 - Nh);

// De-normalize the targetFunctValueFromTestRecord
denormTargetFunctValueFromTestRecord = ((minTargetValueDl -
maxTargetValueDh)*targetFunctValueFromTestRecord - Nh*
minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

// Load the corresponding training micro-batch dataset in memory
MLDataSet trainingSet1 = loadCSV2Memory(strTrainingFile
Names[k1],intInputNeuronNumber,intOutputNeuronNumber,true,
CSVFormat.ENGLISH,false);

//MLDataSet testingSet =

// loadCSV2Memory(strTestingFileNames[k1],
intInputNeuronNumber,

4 intOutputNeuronNumber, true,CSVFormat.ENGLISH, false);

networkl =
(BasicNetwork)EncogDirectoryPersistence.
loadObject(new File(strSaveTrainNetworkFileNames[k1]));

// Get the results after the networkil optimization
int iMax = 0;
int i = - 1; // Index of the array to get results

for (MLDataPair pairi: trainingSet1)

{

332

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

i++;
iMax = i+1;

MLData inputDatal = pairi.getInput();
MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networkil.compute(inputDatail);

// These values are Normalized
normInputDayFromRecordl = inputDatal.getData(0);
normTargetFunctValuel = actualDatail.getData(0);
normPredictFunctValuel = predictDatai.getData(0);

// De-normalize the obtained values
denormInputDayFromRecordl = ((minXPointDl - maxXPointDh)*
normInputDayFromRecordl - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormTargetFunctValuel = ((minTargetValueDl - maxTarget
ValueDh)*normTargetFunctValuel - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormAverPredictFunctValuel =((minTargetValueDl -
maxTargetValueDh)*normPredictFunctValuel - Nh*minTarget
ValueDl + maxTargetValueDh*N1)/(N1 - Nh);

} // End for pairi

A L L L P L PP PP EEEE T P et
// Now calculate everything again for the SaveNetwork (which
// key is greater than dayKeyFromTestRecord value)in memory

A e

MLDataSet trainingSet2 = loadCSV2Memory(strTrainingFileNames
[ki+1], intInputNeuronNumber,
intOutputNeuronNumber,true,CSVFormat.ENGLISH,false);

network2 = (BasicNetwork)EncogDirectoryPersistence.loadObject
(new File(strSaveTrainNetworkFileNames[k1+1]));

// Get the results after the networki optimization

333

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

iMax = 0;
i = - 1; // Index of the array to get results

for (MLDataPair pair2: trainingSet2)
{
i++;
iMax = i+1;

MLData inputData2 = pair2.getInput();
MLData actualData2 = pair2.getIdeal();
MLData predictData2 = network2.compute(inputData2);

// These values are Normalized
normInputDayFromRecord2 = inputData2.getData(0);
normTargetFunctValue2 = actualData2.getData(0);
normPredictFunctValue2 = predictData2.getData(0);

// De-normalize the obtained values
denormInputDayFromRecord2 = ((minXPointDl - maxXPointDh)*
normInputDayFromRecord2 - Nh*minXPointDl + maxX
PointDh*N1)/(N1 - Nh);

denormTargetFunctValue2 = ((minTargetValueDl - maxTarget
ValueDh)*normTargetFunctValue2 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormAverPredictFunctValue2 =((minTargetValueDl -
maxTargetValueDh)*normPredictFunctValue2 - Nh*minTarget
ValueDl + maxTargetValueDh*N1)/(N1 - Nh);

} // End for pairi loop

// Get the average of the denormAverPredictFunctValuel and
denormAverPredictFunctValue2

denormAverPredictFunctValue = (denormAverPredictFunctValuel +

denormAverPredictFunctValue2)/2;

targetToPredictFunctValueDiff = (Math.abs(denormTargetFunct
ValueFromTestRecord - enormAverPredictFunctValue)/
ddenormTargetFunctValueFromTestRecord)*100;

334

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

System.out.println("Record Number = " + k1 + " DayNumber = " +
denormInputDayFromTestRecord + " denormTargetFunctValue
FromTestRecord = " + denormTargetFunctValueFromTestRecord +
" denormAverPredictFunctValue = " + denormAverPredictFunct
Value + " valurDiff = " + targetToPredictFunctValueDiff);

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
{

maxGlobalIndex = iMax;
maxGlobalResultDiff =targetToPredictFunctValueDiff;

}

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredict
FunctValueDiff;
// Populate chart elements

xData.add(denormInputDayFromTestRecord);
yDatal.add(denormTargetFunctValueFromTestRecoxrd);
yData2.add(denormAverPredictFunctValue);

} // End of loop using ki
// Print the max and average results
System.out.println(" ");

averGlobalResultDiff = sumGlobalResultDiff/numberOfTestBatches
ToProcess;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +
" i ="+ maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

} // End of TRY
catch (IOException e1)

{

el.printStackTrace();

335

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// All testing batch files have been processed
XYSeries seriesl = Chart.addSeries("Actual data", xData, yData1);
XYSeries series2 = Chart.addSeries("Predict data", xData, yData2);

seriesi.
.setLineColor(XChartSeriesColors.YELLOW);

series2

seriesi.
seriesd.
seriesi.
.setLineStyle(SeriesLines.DASH DASH);

series2

// Save
try
{

setLineColor(XChartSeriesColors.BLACK);

setMarkerColor(Color.BLACK);
setMarkerColor(Coloxr .WHITE);
setLineStyle(SeriesLines.SOLID);

the chart image

BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,
BitmapFormat.JPG, 100);

}

catch (Exception bt)

{

bt.printStackTrace();

}

System.
System.

out.println ("The Chart has been saved");
out.println("End of testing for mini-batches training");

} // End of the method

} // End of

the Encog class

Listing 9-5 shows the ending fragment of the testing results after execution.

Listing 9-5. Ending Fragment of the Testing Processing Results

DayNumber =

DiffPerc = oO.

DayNumber =

DiffPerc = 0.

3.98411 TargetValue = 1.17624 AverPredicedValue = 1.18028
34348
3.98442 TargetValue = 1.18522 AverPredicedValue = 1.18927
34158

DayNumber = 3.98472 TargetValue = 1.19421 AverPredicedValue = 1.19827

DiffPerc = 0.

336

33959

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 3.98502
DiffPerc = 0.33751
DayNumber = 3.98532

DiffPerc = 0.33534
DayNumber = 3.98562
DiffPerc = 0.33307
DayNumber = 3.98592
DiffPerc = 0.33072
DayNumber = 3.98622
DiffPerc = 0.32828
DayNumber = 3.98652
DiffPerc = 0.32575
DayNumber = 3.98682
DiffPerc = 0.32313
DayNumber = 3.98712
DiffPerc = 0.32043
DayNumber = 3.98742
DiffPerc = 0.31764
DayNumber = 3.98772
DiffPerc = 0.31477
DayNumber = 3.98802
DiffPerc = 0.31181
DayNumber = 3.98832
DiffPerc = 0.30876
DayNumber = 3.98862
DiffPerc = 0.30563
DayNumber = 3.98892
DiffPerc = 0.30242
DayNumber = 3.98922
DiffPerc = 0.29913
DayNumber = 3.98952
DiffPerc = 0.29576
DayNumber = 3.98982
DiffPerc = 0.29230

TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue

TargetValue

1.20323

1.21225

1.22128

1.23032

1.23936

1.24841

1.25744

1.26647

1.27549

1.28449

1.29348

1.30244

1.31138

1.32028

1.32916

1.33799

1.34679

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

Dy Profl Engr Mr Santosh Kumar

1.20729

1.21631

1.22535

1.23439

1.24343

1.25247

1.26151

1.27053

1.27954

1.28854

1.29751

1.30646

1.31538

1.32428

1.33313

1.34195

1.35072

337

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 3.99012
DiffPerc = 0.28876
DayNumber = 3.99042
DiffPerc = 0.28515
DayNumber = 3.99072
DiffPerc = 0.28144
DayNumber = 3.99102
DiffPerc = 0.27768
DayNumber = 3.99132
DiffPerc = 0.27383
DayNumber = 3.99162
DiffPerc = 0.26990
DayNumber = 3.99192
DiffPerc = 0.26590
DayNumber = 3.99222
DiffPerc = 0.26183
DayNumber = 3.99252
DiffPerc = 0.25768
DayNumber = 3.99282
DiffPerc = 0.25346
DayNumber = 3.99312
DiffPerc = 0.24918
DayNumber = 3.99342
DiffPerc = 0.24482
DayNumber = 3.99372
DiffPerc = 0.24040
DayNumber = 3.99402
DiffPerc = 0.23591
DayNumber = 3.99432
DiffPerc = 0.23134
DayNumber = 3.99462
DiffPerc = 0.22672
DayNumber = 3.99492
DiffPerc = 0.22204

338

TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue

TargetValue

1.35554

1.36423

1.37288

1.38146

1.38999

1.39844

1.40683

1.41515

1.42338

1.43153

1.43960

1.44757

1.45544

1.46322

1.47089

1.47845

1.48590

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

Dy Profl Engr Mr Santosh Kumar

35945

.36812

.37674

.38530

39379

.40222

.41057

.41885

42705

.43516

44318

.45111

.45894

.46667

47429

.48180

.48920

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 3.99522
DiffPerc = 0.21729
DayNumber = 3.99552

DiffPerc = 0.21247
DayNumber = 3.99582
DiffPerc = 0.20759
DayNumber = 3.99612
DiffPerc = 0.20260
DayNumber = 3.99642
DiffPerc = 0.19770
DayNumber = 3.99672
DiffPerc = 0.19260
DayNumber = 3.99702
DiffPerc = 0.18751
DayNumber = 3.99732
DiffPerc = 0.18236
DayNumber = 3.99762
DiffPerc = 0.17715
DayNumber = 3.99792
DiffPerc = 0.17188
DayNumber = 3.99822
DiffPerc = 0.16657
DayNumber = 3.99852
DiffPerc = 0.16120
DayNumber = 3.99882
DiffPerc = 0.15580
DayNumber = 3.99912
DiffPerc = 0.15034
DayNumber = 3.99942
DiffPerc = 0.14484

TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue
TargetValue

TargetValue

1.49323

1.50044

1.50753

1.51448

1.52130

1.52799

1.53453

1.54092

1.54717

1.55326

1.55920

1.56496

1.57057

1.57601

1.58127

maxGlobalResultDiff = 0.3620154382225759
averGlobalResultDiff = 0.07501532301280595

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

AverPredicedValue

Dy Profl Engr Mr Santosh Kumar

1.49648

1.50363

1.51066

1.51755

1.52431

1.53093

1.53740

1.54373

1.54991

1.55593

1.56179

1.56749

1.57302

1.57838

1.58356

339

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

The testing processing results (using the micro-batch method) are as follows:
e The maximum error is less than 0.36 percent.
» The average error is less than 0.075 percent.

Figure 9-5 shows the chart of the testing processing results (using the micro-batch
method). Again, both charts are very close and practically overlap (actual values are
black, and predicted values are white).

100 120 140 160 180 200 220 240 260 230 300 320 340 360 380 400
X

* Actual data
Predict data

Figure 9-5. Chart of the testing processing results (using the micro-batch method)

Example 5b: Approximation of Spiral-Like Functions

This section continues the discussion of approximating functions with difficult
topologies. Specifically, it discusses a group of functions that are spiral-like. These
functions have a common property; at some points, they have multiple function values
for a single x point.

340

Dr Prof Engr Mr Saniosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Functions in this group are notoriously difficult to approximate using neural
networks. You will attempt to approximate the function shown in Figure 9-6 first using the
conventional method (which does not work well) and then using the micro-batch method.

AR | 71

LA

AL “tn bl e "- "m LR LA AL _J LR AR

Figure 9-6. Function with multiple values for some xPoints

The function is described by these two equations, where tis an angle:

x(t) =10 + 0.5*t* Cos(0.3* 1)
y(t) =10+ 0.5*t*Sin(0.3*t)

Figure 9-6 shows the chart produced by plotting the values of x and y. Again, we are
pretending that the function formula is unknown and that the function is given to you
by its values at 1,000 points. As usual, you will first try to approximate this function in a
conventional way. Table 9-3 shows the fragment of the training data set.

341

D¥ Piold Erlr:;r f Saniosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

342

Table 9-3. Fragment of the Training

Data Set

X y
14.94996248 10.70560004
14.93574853 10.73381636
14.92137454 10.76188757
14.90684173 10.78981277
14.89215135 10.81759106
14.87730464 10.84522155
14.86230283 10.87270339
14.84714718 10.90003569
14.83183894 10.92721761
14.81637936 10.9542483
14.80076973 10.98112693
14.78501129 11.00785266
14.76910532 11.03442469
14.7530531 11.06084221
14.73685592 11.08710443
14.72051504 11.11321054
14.70403178 11.13915979
14.68740741 11.1649514
14.67064324 11.19058461
14.65374057 11.21605868
14.6367007 11.24137288
14.61952494 11.26652647
14.60221462 11.29151873
14.58477103 11.31634896

(continued)

Dy Profl Engr Mr Santosh Kumar

Table 9-3. (continued)

X y

14.56719551 11.34101647
14.54948938 11.36552056
14.53165396 11.38986056
14.51369059 11.41403579
14.49560061 11.43804562
14.47738534 11.46188937
14.45904613 11.48556643

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

The testing data set is prepared for the points not used in training. Table 9-4 shows
the fragment of the testing data set.

Table 9-4. Fragment of the Testing Data Set

X y
14.9499625 10.70560004
14.9357557 10.73380229
14.921389 10.76185957
14.9068637 10.78977099
14.8921809 10.81753565
14.8773419 10.84515266
14.8623481 10.87262116
14.8472005 10.89994029
14.8319005 10.92710918
14.8164493 10.954127
14.8008481 10.98099291
14.7850984 11.00770609

(continued)

Dy Profl Engr Mr Santosh Kumar

343

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Table 9-4. (continued)

X y
14.7692012 11.03426572
14.7531579 11.060671
14.7369698 11.08692113
14.7206381 11.11301533
14.7041642 11.13895282
14.6875493 11.16473284
14.6707947 11.19035462
14.6539018 11.21581743
14.6368718 11.24112053
14.619706 11.26626319
14.6024058 11.29124469
14.5849724 11.31606434
14.5674072 11.34072143
14.5497115 11.36521527
14.5318866 11.38954519
14.5139339 11.41371053
14.4958547 11.43771062
14.4776503 11.46154483
14.4593221 11.48521251

Both the training and testing data sets have been normalized before processing.

Network Architecture for Example 5b

Figure 9-7 shows the network architecture.

344

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Input

Layer Hidden Layers Output

Layer

ANS7ANSZA \.
%\%’m&

SN .v w
\ »%‘o \:ﬁ
@ ms‘ 0.& o. “ w’

,/ .v..yév”‘h v. r‘va 0‘%" ar‘ >
Ny &0,?; & e i \

N\ S ‘\'
=
{%}\

“” V\
IR @:\g W, AN\ \\\

P\\VMV

Figure 9-7. Network architecture

Program Code for Example 5b

Listing 9-6 shows the program code of the approximation using the conventional
process.

Listing 9-6. Program Code of the Conventional Approximation Process

// Approximation spiral-like function using the conventional process.
// The input file is normalized.

/] ========z======z=======s=s==ss=ssssssssssssssossssss

package sample8;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;

345

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import

346

java.io.PrintWriter;
java.io.FileNotFoundException;
java.io.FileReader;
java.io.FileWriter;
java.io.IOException;
java.io.InputStream;
java.nio.file.*;
java.util.Properties;
java.time.YearMonth;
java.awt.Color;
java.awt.Font;
java.io.BufferedReader;
java.text.DateFormat;
java.text.ParseException;
java.text.SimpleDateFormat;
java.time.LlocalDate;
java.time.Month;
java.time.Zoneld;
java.util.Arraylist;
java.util.Calendar;
java.util.Date;
java.util.list;
java.util.locale;
java.util.Properties;

org.encog.Encog;
org.encog.engine.network.activation.ActivationTANH;
org.encog.engine.network.activation.ActivationRelU;
org.encog.ml.data.MLData;
org.encog.ml.data.MLDataPair;
org.encog.ml.data.MLDataSet;
org.encog.ml.data.buffer.MemoryDataloader;
org.encog.ml.data.buffer.codec.CSVDataCODEC;
org.encog.ml.data.buffer.codec.DataSetCODEC;
org.encog.neural.networks.BasicNetwork;
org.encog.neural.networks.layers.Basiclayer;

Dy Profl Engr Mr Santosh Kumar

import

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

org.encog.neural.networks.training.propagation.resilient.

ResilientPropagation;

import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

{
/1

org.encog.persist.EncogDirectoryPersistence;
org.encog.util.csv.CSVFormat;

org.knowm.xchart.SwingWrapper;
org.knowm.xchart.XYChart;
org.knowm.xchart.XYChartBuilder;
org.knowm.xchart.XYSeries;
org.knowm.xchart.demo.charts.ExampleChart;
org.knowm.xchart.style.Styler.LegendPosition;
org.knowm.xchart.style.colors.ChartColor;
org.knowm.xchart.style.colors.XChartSeriesColors;
org.knowm.xchart.style.lines.SerieslLines;
org.knowm.xchart.style.markers.SeriesMarkers;
org.knowm.xchart.BitmapEncoder;
org.knowm.xchart.BitmapEncoder.BitmapFormat;
org.knowm.xchart.QuickChart;
org.knowm.xchart.SwingWrapper;

class Sample8 implements ExampleChart<XYChart>

Interval to normalize

static double Nh = 1;
static double N1 = -1;

// First column

static double minXPointDl
static double maxXPointDh

1.00;
20.00;

// Second column - target data

static double minTargetValueDl
static double maxTargetValueDh

1.00;
20.00;

static double doublePointNumber = 0.00;
static int intPointNumber = 0;

static InputStream input = null;

static double[] arrPrices = new double[2500];
static double normInputXPointValue = 0.00;

347

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

static double normPredictXPointValue = 0.00;
static double normTargetXPointValue = 0.00;
static double normDifferencePerc = 0.00;
static double returnCode = 0.00;

static double denormInputXPointValue = 0.00;
static double denormPredictXPointValue = 0.00;
static double denormTargetXPointValue = 0.00;
static double valueDifference = 0.00;

static int numberOfInputNeurons;

static int numberOfOutputNeurons;

static int intNumberOfRecordsInTestFile;
static String trainFileName;

static String priceFileName;

static String testFileName;

static String chartTrainFileName;

static String chartTestFileName;

static String networkFileName;

static int workingMode;

static String cvsSplitBy = ",";

static int numberOfInputRecords = 0;

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new Arraylist<Double>();
static List<Double> yData2 = new Arraylist<Double>();

static XYChart Chart;

@Override
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

348

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Customize Chart
Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.

getAWTColor (ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColor(new Color (255, 255, 255));

//Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColor
(ChartColor.WHITE));

//Chart.getStyler().setPlotGridLinesColor(new Color(o, 0, 0));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
//Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setLegendBackgroundColor(Color.WHITE);
//Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartFontColor(Color.BLACK);
Chart.getStyler().setChartTitleBoxBackgroundColoxr(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColoxr(Coloxr.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
//Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendPosition(LegendPosition.OutsideS);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF, Font.
ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.
PLAIN, 11));

349

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

try
{

// Configuration
// Set the mode the program should run
workingMode = 1; // Training mode

if(workingMode == 1)
{
// Training mode
numberOfInputRecords = 1001;
trainFileName =
"/My_Neural Network Book/Book_ Examples/Sample8 Calculate_
Train_Norm.csv";
chartTrainFileName =
"C:/My Neural Network Book/Book Examples/
Sample8 Chart ComplexFormula Spiral Train Results.csv";

}
else

{
// Testing mode
numberOfInputRecords = 1003;
intNumberOfRecordsInTestFile = 3;
testFileName = "C:/Book Examples/Sample2 Norm.csv";
chartTestFileName = "XYLine_Test_Results_Chart";

}

// Common part of config data
networkFileName = "C:/My Neural Network Book/Book Examples/
Sample8 Saved Network File.csv";

numberOfInputNeurons = 1;
numberOfOutputNeurons = 1;

// Check the working mode to run

350

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

if(workingMode == 1)

{

// Training mode
File file1 = new File(chartTrainFileName);
File file2 = new File(networkFileName);

if(filel.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the error Code

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

else

{
// Test mode

loadAndTestNetwork();

}
catch (Throwable t)

{
t.printStackTrace();

System.exit(1);

}
finally

{
Encog.getInstance().shutdown();

}
Encog.getInstance().shutdown();

return Chart;

} // End of the method
351

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Load CSV to memory.
// @return The loaded dataset.
// =======s=============sss===s=sss==SsssssssSssssSsSSssss
public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.
// @param Command line arguments. No arguments are used.
/| ========z=====z===z==z=======z===========s=================
public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new Sample8();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

static public double trainvValidateSaveNetwork()

{

// Load the training CSV file in memory

MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numbexrOfInputNeurons,numberOf
OutputNeurons,true,CSVFormat.ENGLISH, false);

352

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,1));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,10));

// Output layer
//network.addLayer(new BasiclLayer(new ActivationlOG(),false,1));
network.addLayer(new BasicLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;

do
{

train.iteration();

Ll T

System.out.println("Epoch #" + epoch + " Error:" + train.getErroxr());
epoch++;

if (epoch >= 11000 && network.calculateError(trainingSet) > 0.2251)

{

returnCode = 1;

System.out.println("Try again");

353

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

return returnCode;

}

} while(train.getError() > 0.225);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network);

System.out.println("Neural Network Results:");

double sumNormDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxNormDifferencePerc = 0.00;

int m = 0;
double xPointer = 0.00;

for(MLDataPair pair: trainingSet)

{
m++;
xPointer++;
//if(m == 0)

// continue;
final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results
normInputXPointValue = inputData.getData(0);
normTargetXPointValue = actualData.getData(0);
normPredictXPointValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*normInpu
tXPointValue - Nh*minXPointDl + maxXPointDh *N1)/(N1 - Nh);

354

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

denormTargetXPointValue =((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValue - Nh*minTargetValueDl + maxTarget
ValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTarget
ValueDh)* normPredictXPointValue - Nh*minTargetValueDl + max
TargetValueDh*N1)/(NL - Nh);

valueDifference = Math.abs(((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue)*100.00);

System.out.println ("Day =

+ denormInputXPointValue +

denormTargetXPointValue = " + denormTargetXPointValue +
denormPredictXPointValue =
valueDifference =

+ denormPredictXPointValue +
+ valueDifference);

//System.out.println("intPointNumber = " + intPointNumber);

sumNormDifferencePerc = sumNormDifferencePerc + valueDifference;

if

(valueDifference > maxNormDifferencePerc)

maxNormDifferencePerc = valueDifference;

xData.add(denormInputXPointValue);
yDatail.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop

XYSeries seriesi
XYSeries series2

seriesi.
series2.

seriesi.
series2.
seriesi.
series2.

Chart.addSeries("Actual data", xData, yData1);
Chart.addSeries("Predict data", xData, yData2);

setLineColor(XChartSeriesColors.BLACK);
setLineColor(XChartSeriesColors.LIGHT GREY);

setMarkerColor(Color.BLACK);
setMarkerColoxr(Color.WHITE);
setLineStyle(SeriesLines.NONE);
setLineStyle(SeriesLines.SOLID);

355

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

try
{
//Save the chart image
BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,
BitmapFormat.JPG, 100);
System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network);

System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNormDifferencePerc/numberOfInput
Records;

System.out.println(" ");
System.out.println("maxNoxrmDifferencePerc = " + maxNormDifference

Perc + averNormDifferencePerc = " + averNormDifferencePerc);"

returnCode = 0.00;
return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

356

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictPercent = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputXPointValueFromRecord = 0.00;
double normTargetXPointValueFromRecord = 0.00;
double normPredictXPointValueFromRecord = 0.00;

BasicNetwork network;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory

MLDataSet testingSet =

loadCSV2Memory(testFileName, numberOfInputNeurons,numberOfOutput
Neurons,true, CSVFormat.ENGLISH,false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject(new File(network
FileName));

int i = - 1; // Index of the current record
double xPoint = -0.00;

for (MLDataPair pair: testingSet)
{

it++;
xPoint = xPoint + 2.00;

357

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputXPointValueFromRecord = inputData.getData(0);
normTargetXPointValueFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl + maxX
PointDh*N1)/(N1 - Nh);

denormTargetXPointValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictXPointValue =((minTargetValueDl - maxTargetValueDh)*
normPredictXPointValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

targetToPredictPercent = Math.abs((denormTargetXPointValue -
denormPredictXPointValue)/denormTargetXPointValue*100);

System.out.println("xPoint = " + xPoint + " denormTargetX
PointValue = " + denormTargetXPointValue + " denormPredictX
PointValue = " + denormPredictXPointValue + " targetToPredict
Percent = " + targetToPredictPercent);

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredict
Percent;

// Populate chart elements
xData.add(xPoint);
yDatal.add(denormTargetXPointValue);
yData2.add(denormPredictXPointValue);

} // End for pair loop

358

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Print the max and average results
System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/numberOfInputRecords;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +
" i ="+ maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

// All testing batch files have been processed
XYSeries seriesl = Chart.addSeries("Actual", xData, yDatail);
XYSeries series2 = Chart.addSeries("Predicted", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for test records");

} // End of the method

} // End of the class

The function was approximated using the conventional network processing.
Listing 9-7 shows the end fragment of the conventional processing results.

359

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Listing 9-7. The End Fragment of the Conventional Training Results

Day = 5.57799
DiffPerc = 90
Day = 5.55941

DiffPerc = 90.

Day = 5.54095
DiffPerc = 89
Day = 5.52261

DiffPerc = 89.

Day = 5.50439

DiffPerc = 89.

Day = 5.48630
DiffPerc = 89
Day = 5.46834

DiffPerc = 89.

Day = 5.45051

DiffPerc = 89.

Day = 5.43280

DiffPerc = 89.

Day = 5.41522

DiffPerc = 89.

Day = 5.39778

DiffPerc = 89.

Day = 5.38047

DiffPerc = 89.

Day = 5.36329

DiffPerc = 89.

Day = 5.34625

DiffPerc = 89.

Day = 5.32935

DiffPerc = 89.

Day = 5.31259

DiffPerc = 89.

Day = 5.29596

DiffPerc = 89.

360

TargetValue
.02216
TargetValue
00153
TargetValue
.98067
TargetValue
95958
TargetValue
93824
TargetValue
.91667
TargetValue
89485
TargetValue
87280
TargetValue
85049
TargetValue
82794
TargetValue
80515
TargetValue
78210
TargetValue
75880
TargetValue
73525
TargetValue
71144
TargetValue
68737
TargetValue
66305

1

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

115

11.

11.

53242

50907

48556

46188

43804

41403

38986

36552

34101

31634

29151

26652

24137

21605

19058

16495

13915

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

Dy Profl Engr Mr Santosh Kumar

1.15068

1.15073

1.15077

1.15082

1.15086

1.15091

1.15096

1.15100

1.15105

1.15110

1.15115

1.15120

1.15125

1.15130

1.15134

1.15139

1.15144

Day = 5.27948

DiffPerc = 89.

Day = 5.26314

DiffPerc = 89.

Day = 5.24694

DiffPerc = 89.

Day = 5.23089

DiffPerc = 89.

Day = 5.21498

DiffPerc = 89.

Day = 5.19923

DiffPerc = 89.

Day = 5.18362
DiffPerc = 89
Day = 5.16816
DiffPerc = 89
Day = 5.15285
DiffPerc = 89
Day = 5.13769
DiffPerc = 89
Day = 5.12269

DiffPerc = 89.

Day = 5.10784

DiffPerc = 89.

Day = 5.09315

DiffPerc = 89.

Day = 5.07862

DiffPerc = 89.

maxErroxrPerc

TargetValue =
63846

TargetValue = 11.
61361

TargetValue = 11.
58850

TargetValue = 11.
56311

TargetValue = 11.
53746

TargetValue = 10.
51153

TargetValue = 10.
.48534

TargetValue = 10.
-45886

TargetValue = 10.
.43211

TargetValue = 10.
.40508

TargetValue = 10.
37776

TargetValue = 10.
35016

TargetValue = 10.
32228

TargetValue = 10.
29410
= 91.1677948809837

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

11.11321 PredictedValue

08710

06084

03442

00785

98112

95424

92721

90003

87270

84522

81759

78981

76188

averErrorPerc = 90.04645291133258

With the conventional process, the approximation results are as follows:

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

PredictedValue

e The maximum error percent exceeds 91.16 percent.

» The average error percent exceeds 90,0611 percent.

Dy Profl Engr Mr Santosh Kumar

1.15149

1.15154

1.15159

1.15165

1.15170

1.15175

1.15180

1.15185

1.15190

1.15195

1.15200

1.15205

1.15210

1.15215

361

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Figure 9-8 shows the chart of the training approximation results using the
conventional network processing.

1200 —

10,00 —f

4.00 -

2.00 _—

I I [I I [‘ I I

5.00 6.00 7.00 £.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

X

® Actual data
Predict data

Figure 9-8. Chart of the training approximation results using the conventional
network processing

Obviously, such an approximation is completely useless.

Approximation of the Same Function Using
the Micro-Batch Method

Now, let’s approximate this function using the micro-batch method. Again, the
normalized training data set is broken into a set of training micro-batch files, and it
is now the input to the training process. Listing 9-8 shows the program code for the
training method using the micro-batch process.

362

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Listing 9-8. Program Code for the Training Method Using the Micro-Batch
Process

// Approximation the spiral-like function using the micro-batch method.

// The input is the normalized set of micro-batch files (each micro-batch

// includes a single day record).

// Each record consists of:

// - normDayValue

// - normTargetValue

/7

// The number of inputlLayer neurons is 1

// The number of outputlLayer neurons is 1

// Each network is saved on disk and a map is created to link each saved
trained

// network with the corresponding training micro-batch file.

package sample8 microbatches;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.time.Month;

import java.time.Zoneld;

363

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

import java.util.Arraylist;

import java.util.Calendar;

import java.util.list;

import java.util.Llocale;

import java.util.Properties;

import org.encog.Encog;

import org.encog.engine.network.activation.ActivationTANH;

import org.encog.engine.network.activation.ActivationRelU;

import org.encog.ml.data.MLData;

import org.encog.ml.data.MLDataPair;

import org.encog.ml.data.MLDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDataCODEC;

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.Basiclayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

364

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

public class Sample8 Microbatches implements ExampleChart<XYChart>
{

// Normalization parameters

// Normalizing interval
static double Nh = 1;
static double N1 = -1;

// inputFunctValueDiffPerc
static double inputDayDh = 20.00;
static double inputDayDl = 1.00;

// targetFunctValueDiffPerc
static double targetFunctValueDiffPercDh
static double targetFunctValueDiffPercDl

20.00;
1.00;

non

static String cvsSplitBy = ",";
static Properties prop = null;

static String strWorkingMode;

static String strNumberOfBatchesToProcess;
static String strTrainFileNameBase;

static String strTestFileNameBase;

static String strSaveTrainNetworkFileBase;
static String strSaveTestNetworkFileBase;
static String strValidateFileName;

static String strTrainChartFileName;
static String strTestChartFileName;

static String strFunctValueTrainFile;
static String strFunctValueTestFile;
static int intDayNumber;

static double doubleDayNumber;

static int intWorkingMode;

static int numberOfTrainBatchesToProcess;
static int numberOfTestBatchesToProcess;
static int intNumberOfRecordsInTrainFile;
static int intNumberOfRecordsInTestFile;
static int intNumberOfRowsInBatches;

365

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

static int intInputNeuronNumber;

static int intOutputNeuronNumber;

static String strOutputFileName;

static String strSaveNetworkFileName;

static String strDaysTrainFileName;

static XYChart Chart;

static String iString;

static double inputFunctValueFromFile;
static double targetToPredictFunctValueDiff;
static int[] returnCodes = new int[3];

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new ArraylList<Double>();

static double
static String

DaysyearDayTraining = new double[1200];
strTrainingFileNames = new String[1200];
strTestingFileNames = new String[1200];

]
]
static String[]
] strSaveTrainNetworkFileNames = new String[1200];
]
]
]
]

[
[
[
static String|
static double[] linkToSaveNetworkDayKeys = new double[1200];

[] linkToSaveNetworkTargetFunctValueKeys = new double[1200];

[] arrTrainFunctValues = new double[1200];

[

arrTestFunctValues = new double[1200];

static double
static double
static double

@verride
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("day").yAxisTitle("y=f(day)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColoxr
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColoxr(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);

366

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColor(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
// Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setlLegendPosition(LegendPosition.OutsideE);
Chart.getStyler().setLegendSeriesLineLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));

//Chart.getStyler().setDayPattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Config data

// Set the mode the program should run
intWorkingMode = 1; // Training mode

if(intWorkingMode == 1)
{
numberOfTrainBatchesToProcess = 1000;
numberOfTestBatchesToProcess = 999;
intNumbexrOfRowsInBatches = 1;
intInputNeuronNumber = 1;
intOutputNeuronNumber = 1;
strTrainFileNameBase = "C:/My Neural Network Book/Book Examples/

Work Files/Sample8 Microbatch Train ";

367

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

strTestFileNameBase = "C:/My Neural Network Book/Book Examples/
Work Files/Sample8 Microbatch Test ";

strSaveTrainNetworkFileBase = "C:/My_Neural Network Book/Book
Examples/Work Files/Sample8 Save Network Batch ";
strTrainChartFileName = "C:/Book Examples/Sample8 Chart Train File
Microbatch.jpg";

strTestChartFileName = "C:/Book Examples/Sample8 Chart Test File
Microbatch.jpg";

// Generate training batches file names and the corresponding
// SaveNetwork file names

intDayNumber = -1; // Day number for the chart

for (int 1 = 0; i < numberOfTrainBatchesToProcess; i++)

{

intDayNumber++;
iString = Integer.toString(intDayNumber);

if (intDayNumber »>= 10 & intDayNumber < 100)

{

strOutputFileName = strTrainFileNameBase + "0" +

iString + ".csv";
strSaveNetworkFileName = strSaveTrainNetwork
FileBase + "0" + iString + “.csv”;

}

else

if (intDayNumber < 10)
{
strOutputFileName = strTrainFileNameBase + "00" +
iString + ".csv";
strSaveNetworkFileName = strSaveTrainNetworkFileBase +

"00" + iString + ".csv";

368

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

else

{

strOutputFileName = strTrainFileNameBase + iString + ".csv";

strSaveNetworkFileName = strSaveTrainNetworkFileBase +
iString + ".csv";

}

strTrainingFileNames[intDayNumber] = strOutputFileName;
strSaveTrainNetworkFileNames[intDayNumber] =
strSaveNetworkFileName;

} // End the FOR loop

// Build the array linkToSaveNetworkFunctValueDiffKeys
String templine;

double tempNormFunctValueDiff = 0.00;

double tempNormFunctValueDiffPerc = 0.00;

double tempNormTargetFunctValueDiffPerc = 0.00;

String[] tempWorkFields;

try

{
intDayNumber = -1; // Day number for the chart

for (int m = 0; m < numberOfTrainBatchesToProcess; m++)

{

intDayNumber++;

BufferedReader br3 = new BufferedReader(new
FileReader(strTrainingFileNames[intDayNumber]));

tempLine = br3.readlLine();

// Skip the label record and zero batch record
tempLine = br3.readlLine();

// Break the line using comma as separator
tempWorkFields = templLine.split(cvsSplitBy);

Dy Profl Engr Mr Santosh Kumar

369

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

tempNormFunctValueDiffPerc = Double.parseDouble
(tempWorkFields[0]);

tempNormTargetFunctValueDiffPerc = Double.parseDouble
(tempWorkFields[1]);

linkToSaveNetworkDayKeys[intDayNumber] = tempNormFunct
ValueDiffPerxc;

linkToSaveNetworkTargetFunctValueKeys[intDayNumber] =
tempNormTargetFunctValueDiffPerc;

} // End the FOR loop

else

// Testing mode. Generate testing batch file names
intDayNumber = -1;

for (int i = 0; i < numberOfTestBatchesToProcess; i++)

{

intDayNumber++;
iString = Integer.toString(intDayNumber);

// Construct the testing batch names
if (intDayNumber >= 10 & intDayNumber < 100)

{
strOutputFileName = strTestFileNameBase + "0" +
iString + ".csv";
}
else
{
if (intDayNumber < 10)

{
strOutputFileName = strTestFileNameBase + "00" +
iString + ".csv";

}

370

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

else

{

strOutputFileName = strTestFileNameBase +

. . ' ",
iString + ".csv';

}
}

strTestingFileNames[intDayNumber] = strOutputFileName;
} // End the FOR loop
} // End of IF

} // End for try
catch (IOException io1)

{

iol.printStackTrace();
System.exit(1);

// Train mode

// Load, train, and test Function Values file in memory
loadTrainFunctValueFileInMemory();

int paramErrorCode;

int paramBatchNumber;

int paramR;

int paramDayNumber;

int paramsS;

File filel = new File(strTrainChartFileName);

if(filel.exists())
filel.delete();

371

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

returnCodes[0] = 0; // Clear the error Code
returnCodes[1] = 0; // Set the initial batch Number to 0;

returnCodes[2] = 0; // Day number;
do
{
paramkrrorCode = returnCodes[0];

paramBatchNumber = returnCodes[1];
paramDayNumber = returnCodes[2];

returnCodes =
trainBatches(paramErrorCode,paramBatchNumber, paramDayNumber);
} while (returnCodes[0] > 0);

} // End the train logic
else

{
// Testing mode

File file2 = new File(stxTestChartFileName);

if(file2.exists())
file2.delete();

loadAndTestNetwork();

// End the test logic
}

Encog.getInstance().shutdown();
//System.exit(0);
return Chart;

} // End of method

// Load CSV to memory.
// @return The loaded dataset.
// 3+ttt 31+ttt 3ttt 3313ttt 331ttt -1ttt

372

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

public static MLDataSet loadCSV2Memory(String filename, int input, int
ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.

// @param Command line arguments. No arguments are used.
// ===========sscszssszssssssssssssossoosssooosoooooooses
public static void main(String[] args)

{

ExampleChart<XYChart> exampleChart = new Sample8 Microbatches();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();

} // End of the main method

// This method trains batches as individual networkis
// saving them in separate trained datasets

static public int[] trainBatches(int paramErrorCode,
int paramBatchNumber,int

paramDayNumber)
{
int rBatchNumber;
double targetToPredictFunctValueDiff = 0;
double maxGlobalResultDiff = 0.00;
double averGlobalResultDiff = 0.00;
double sumGlobalResultDiff = 0.00;
double normInputFunctValueFromRecord = 0.00;

double normTargetFunctValuel = 0.00;

373

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

double normPredictFunctValuel = 0.00;

double denormInputDayFromRecord;

double denormInputFunctValueFromRecord = 0.00;
double denormTargetFunctValue = 0.00;

double denormPredictFunctValuel = 0.00;

BasicNetwork networki = new BasicNetwork();

// Input layer
networki.addLayer(new Basiclayer(null,true,intInputNeuronNumber));

// Hidden layer.

networki.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network1.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network1.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
networki.addLayer(new BasicLayer(new ActivationTANH(),true,7));
networkl.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

// Output layer
networki.addLayer(new BasicLayer(new ActivationTANH(),false,
intOutputNeuronNumber));

networki.getStructure().finalizeStructure();
networki.reset();

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Loop over batches
intDayNumber = paramDayNumber; // Day number for the chart

for (rBatchNumber = paramBatchNumber; rBatchNumber < numberOfTrain
BatchesToProcess;
rBatchNumber++)

{

intDayNumber++;

//if(intDayNumber == 502)
// rBatchNumber = rBatchNumber;

374

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Load the training file in memory

MLDataSet trainingSet = loadCSV2Memory(strTrainingFileNames
[rBatchNumber], intInputNeuronNumber, intOutputNeuronNumber,
true,CSVFormat.ENGLISH,false);

// train the neural networki
ResilientPropagation train = new ResilientPropagation(networki,
trainingSet);

int epoch = 1;

do
{
train.iteration();
epoch++;

for (MLDataPair pairii: trainingSet)
{
MLData inputDatal = pairii.getInput();
MLData actualDatal = pairii.getIdeal();
MLData predictDatal = networki.compute(inputDatal);

// These values are Normalized as the whole input is
normInputFunctValueFromRecord = inputDatail.getData(0);

normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatal.getData(0);

denormInputFunctValueFromRecord =((inputDayDl -
inputDayDh)*normInputFunctValueFromRecord - Nh*inputDayDl +
inputDayDh*N1)/(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValuel -
Nh*targetFunctValueDiffPercDl + targetFunctValue
DiffPercDh*N1)/(N1 - Nh);

denormPredictFunctValuel =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValuel -
Nh*targetFunctValueDiffPercDl + targetFunctValueDiff
PercDh*N1)/(N1 - Nh);

375

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

//inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTarget
FunctValue - enormPredictFunctValuel)/ddenormTarget

FunctValue)*100;
}
if (epoch >= 1000 && Math.abs(targetToPredictFunctValueDiff) >
0.0000091)
{
returnCodes[0] = 1;
returnCodes[1] = rBatchNumber;
returnCodes[2] = intDayNumber-1;

return returnCodes;
}
//System.out.println("intDayNumber = " + intDayNumber);
} while(Math.abs(targetToPredictFunctValueDiff) > 0.000009);
// This batch is optimized

// Save the networki for the current batch
EncogDirectoryPersistence.saveObject(newFile(strSaveTrainNetwork
FileNames[rBatchNumber]),network1);

// Get the results after the networki optimization
int i = - 1;

for (MLDataPair pairi: trainingSet)

{
i++;
MLData inputDatal = pairi.getInput();

MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networki.compute(inputDatal);

376

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// These values are Normalized as the whole input is
normInputFunctValueFromRecord = inputDatail.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatal.getData(0);

// De-normalize the obtained values
denormInputFunctValueFromRecord =((inputDayDl - inputDayDh)*
normInputFunctValueFromRecord - Nh*inputDayDl + inputDayDh*N1)/
(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl - targetFunct
ValueDiffPercDh)*normTargetFunctValuel - DiffPercDl + target
FunctValueDiffPercDh*N1)/(N1 - Nh);

denormPredictFunctValuel =((targetFunctValueDiffPercDl - targetFunct
ValueDiffPercDh)*normPredictFunctValuel - Nh*targetFunctValue
DiffPercDl + targetFunctValueDiffPercDh*N1)/(N1 - Nh);

//inputFunctValueFromFile = arrTrainFunctValues[rBatchNumber];

targetToPredictFunctValueDiff = (Math.abs(denormTargetFunctValue -
denormPredictFunctValuel)/denormTargetFunctValue)*100;

System.out.println("intDayNumber = " + intDayNumber + " target
FunctionValue = " + denormTargetFunctValue + " predictFunction
Value = " + denormPredictFunctValuel + " valurDiff = " +

targetToPredictFunctValueDiff);

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
maxGlobalResultDiff =targetToPredictFunctValueDiff;

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredict
FunctValueDiff;

// Populate chart elements
xData.add(denormInputFunctValueFromRecord);
yData1.add(denormTargetFunctValue);
yData2.add(denormPredictFunctValuel);

} // End for FunctValue pairi loop

} // End of the loop over batches
377

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

sumGlobalResultDiff = sumGlobalResultDiff +targetToPredict
FunctValueDiff;

averGlobalResultDiff = sumGlobalResultDiff/numberOfTrainBatches
ToProcess;

// Print the max and average results

System.out.println(" ");

System.out.println(" ");

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

XYSeries seriesi
XYSeries series2

Chart.addSeries("Actual"”, xData, yData1l);
Chart.addSeries("Forecasted", xData, yData2);

seriesi.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesl.setLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try
{
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,
BitmapFormat.JPG, 100);

}
catch (Exception bt)
{
bt.printStackTrace();
}
System.out.println ("The Chart has been saved");
returnCodes[0] = 0;
returnCodes[1] = 0;
returnCodes[2] = 0;

return returnCodes;

} // End of method

378

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Load the previously saved trained networkl and tests it by
// processing the Test record

static public void loadAndTestNetwork()
{

System.out.println("Testing the networkis results");

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictFunctValueDiff = 0;
double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;
double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

double normInputDayFromRecordi = 0.00;
double normTargetFunctValuel = 0.00;

double normPredictFunctValuel = 0.00;
double denormInputDayFromRecord = 0.00;
double denormTargetFunctValue = 0.00;
double denormPredictFunctValue = 0.00;
double normInputDayFromRecord2 = 0.00;
double normTargetFunctValue2 = 0.00;

double normPredictFunctValue2 = 0.00;
double denormInputDayFromRecord2 = 0.00;
double denormTargetFunctValue2 = 0.00;
double denormPredictFunctValue2 = 0.00;
double normInputDayFromTestRecord = 0.00;
double denormInputDayFromTestRecord = 0.00;
double denormTargetFunctValueFromTestRecord = 0.00;

String templine;
String[] tempWorkFields;
double dayKeyFromTestRecord = 0.00;

379

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

double targetFunctValueFromTestRecord = 0.00;
double r1 = 0.00;

double r2 = 0.00;

BufferedReader br4;

BasicNetwork networki;
BasicNetwork network2;

int k1 = 0;

int k3 = 0;
try

{

// Process testing records

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

for (ki = 0; k1 < numberOfTestBatchesToProcess; ki++)

{
if(k1 == 100)
ki = k1;

// Read the corresponding test micro-batch file.
br4a = new BufferedReader(new FileReader(strTestingFileNames[k1]));
tempLine = br4.readlLine();

// Skip the label record
templLine = br4.readlLine();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

dayKeyFromTestRecord = Double.parseDouble(tempWorkFields[0]);
targetFunctValueFromTestRecord = Double.parseDouble
(tempWorkFields[1]);

// De-normalize the dayKeyFromTestRecord
denormInputDayFromTestRecord =

((inputDayDl - inputDayDh)*dayKeyFromTestRecord -
Nh*inputDayDl + inputDayDh*N1)/(N1 - Nh);

380

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// De-normalize the targetFunctValueFromTestRecord
denormTargetFunctValueFromTestRecord =
((targetFunctValueDiffPercDl - targetFunctValueDiffPercDh)*
targetFunctValueFromTestRecord - Nh*targetFunctValueDiffPercDl +
targetFunctValueDiffPercDh*N1)/(N1 - Nh);

// Load the corresponding training micro-batch dataset in memory
MLDataSet trainingSet1 = loadCSV2Memory(strTrainingFileNames
[k1],intInputNeuronNumber,intOutputNeuronNumber,
true,CSVFormat.ENGLISH, false);

//MLDataSet testingSet =
// loadCSV2Memory(strTestingFileNames[k1], intInputNeuronNumber,
// intOutputNeuronNumber,true,CSVFormat.ENGLISH,false);

networkl =
(BasicNetwork)EncogDirectoryPersistence.
loadObject(new File(strSaveTrainNetworkFileNames[k1]));

// Get the results after the networkil optimization
int iMax = 0;
int 1 = - 1; // Index of the array to get results

for (MLDataPair pairi: trainingSet1)

{
i++;
iMax = i+1;
MLData inputDatal = pairi.getInput();
MLData actualDatal = pairi.getIdeal();
MLData predictDatal = networki.compute(inputDatal);

// These values are Normalized as the whole input is
normInputDayFromRecordl = inputDatal.getData(0);
normTargetFunctValuel = actualDatal.getData(0);
normPredictFunctValuel = predictDatai.getData(0);

381

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

denormInputDayFromRecord = ((inputDayDl - inputDayDh)*
normInputDayFromRecord1 - Nh*inputDayDl +
inputDayDh*N1)/(N1 - Nh);

denormTargetFunctValue = ((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normTargetFunctValuel - Nh*
targetFunctValueDiffPercDl + targetFunctValue
DiffPercDh*N1)/(N1 - Nh);

denormPredictFunctValue =((targetFunctValueDiffPercDl -
targetFunctValueDiffPercDh)*normPredictFunctValuel - Nh*

targetFunctValueDiffPercDl + targetFunctValue
DiffPercDh*N1)/(NL1 - Nh);

targetToPredictFunctValueDiff = (Math.abs(denormTarget
FunctValue - denormPredictFunctValue)/denormTarget
FunctValue)*100;

System.out.println("Record Number = " + ki1 + " DayNumber =
" + denormInputDayFromTestRecord +

denormTargetFunctValueFromTestRecord =
FunctValueFromTestRecord + "
denormPredictFunctValue +

ToPredictFunctValueDiff);

n n

+ denormTarget

denormPredictFunctValue = " +
valurDiff = " + target

if (targetToPredictFunctValueDiff > maxGlobalResultDiff)
{

maxGlobalIndex = iMax;
maxGlobalResultDiff =targetToPredictFunctValueDiff;

}

sumGlobalResultDiff = sumGlobalResultDiff +
targetToPredictFunctValueDiff;

// Populate chart elements

xData.add(denormInputDayFromTestRecord);
yData1.add(denormTargetFunctValueFromTestRecord);
yData2.add(denormPredictFunctValue);

} // End for pair2 loop
382

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY
} // End of loop using k1
// Print the max and average results
System.out.println(" ");

averGlobalResultDiff = sumGlobalResultDiff/numberOfTestBatches
ToProcess;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +

i = " + maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);

} // End of TRY
catch (FileNotFoundException nf)

{
nf.printStackTrace();
}
catch (IOException el)
{
el.printStackTrace();
}

// All testing batch files have been processed
XYSeries seriesil = Chart.addSeries("Actual", xData, yDatail);
XYSeries series2 = Chart.addSeries("Forecasted", xData, yData2);

series1.setlLineColor(XChartSeriesColors.BLACK);
series2.setlLineColor(XChartSeriesColors.LIGHT GREY);

seriesl.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

383

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

// Save the chart image

try
i
BitmapEncoder.saveBitmapWithDPI(Chart, strTrainChartFileName,
BitmapFormat.JPG, 100);
}
catch (Exception bt)
{
bt.printStackTrace();
}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for mini-batches training");

} // End of the method
} // End of the Encog class

Listing 9-9 shows the ending fragment of the training processing results (using the
macro-batch method) after execution.

Listing 9-9. Ending Fragment of the Training Processing Results (Using the
Macro-Batch Method)

DayNumber = 947 targetFunctionValue = 12.02166
predictFunctionValue = 12.02166 valurDiff = 5.44438E-6
DayNumber = 948 targetFunctionValue = 12.00232
predictFunctionValue = 12.00232 valurDiff = 3.83830E-6
DayNumber = 949 targetFunctionValue = 11.98281
predictFunctionValue = 11.98281 valurDiff = 2.08931E-6
DayNumber = 950 targetFunctionValue = 11.96312
predictFunctionValue = 11.96312 valurDiff = 6.72376E-6
DayNumber = 951 targetFunctionValue = 11.94325
predictFunctionValue = 11.94325 valurDiff = 4.16461E-7
DayNumber = 952 targetFunctionvValue = 11.92320
predictFunctionValue = 11.92320 valurDiff = 1.27943E-6
DayNumber = 953 targetFunctionValue = 11.90298
predictFunctionValue = 11.90298 valurDiff = 8.38334E-6

384

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 954 targetFunctionValue = 11.88258
predictFunctionValue = 11.88258 valurDiff = 5.87549E-6
DayNumber = 955 targetFunctionValue = 11.86200
predictFunctionValue = 11.86200 valurDiff = 4.55675E-6
DayNumber = 956 targetFunctionValue = 11.84124
predictFunctionValue = 11.84124 valurDiff = 6.53477E-6
DayNumber = 957 targetFunctionValue = 11.82031
predictFunctionValue = 11.82031 valurDiff = 2.55647E-6
DayNumber = 958 targetFunctionValue = 11.79920
predictFunctionValue = 11.79920 valurDiff = 8.20278E-6
DayNumber = 959 targetFunctionValue = 11.77792
predictFunctionValue = 11.77792 valurDiff = 4.94157E-7
DayNumber = 960 targetFunctionValue = 11.75647
predictFunctionValue = 11.75647 valurDiff = 1.48410E-6
DayNumber = 961 targetFunctionValue = 11.73483
predictFunctionValue = 11.73484 valurDiff = 3.67970E-6
DayNumber = 962 targetFunctionValue = 11.71303
predictFunctionValue = 11.71303 valurDiff = 6.83684E-6
DayNumber = 963 targetFunctionValue = 11.69105
predictFunctionValue = 11.69105 valurDiff = 4.30269E-6
DayNumber = 964 targetFunctionValue = 11.66890
predictFunctionValue = 11.66890 valurDiff = 1.69128E-6
DayNumber = 965 targetFunctionValue = 11.64658
predictFunctionValue = 11.64658 valurDiff = 7.90340E-6
DayNumber = 966 targetFunctionValue = 11.62409
predictFunctionValue = 11.62409 valurDiff = 8.19566E-6
DayNumber = 967 targetFunctionValue = 11.60142
predictFunctionValue = 11.60143 valurDiff = 4.52810E-6
DayNumber = 968 targetFunctionValue = 11.57859
predictFunctionValue = 11.57859 valurDiff = 6.21339E-6
DayNumber = 969 targetFunctionValue = 11.55559
predictFunctionValue = 11.55559 valurDiff = 7.36500E-6
DayNumber = 970 targetFunctionValue = 11.53241
predictFunctionValue = 11.53241 valurDiff = 3.67611E-6
DayNumber = 971 targetFunctionValue = 11.50907
predictFunctionValue = 11.50907 valurDiff = 2.04084E-6

385

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 972 targetFunctionValue = 11.48556
predictFunctionValue = 11.48556 valurDiff = 3.10021E-6
DayNumber = 973 targetFunctionValue = 11.46188
predictFunctionValue = 11.46188 valurDiff = 1.04282E-6
DayNumber = 974 targetFunctionValue = 11.43804
predictFunctionValue = 11.43804 valurDiff = 6.05919E-7
DayNumber = 975 targetFunctionValue = 11.41403
predictFunctionValue = 11.41403 valurDiff = 7.53612E-6
DayNumber = 976 targetFunctionValue = 11.38986
predictFunctionValue = 11.38986 valurDiff = 5.25148E-6
DayNumber = 977 targetFunctionValue = 11.36552
predictFunctionValue = 11.36551 valurDiff = 6.09695E-6
DayNumber = 978 targetFunctionValue = 11.34101
predictFunctionValue = 11.34101 valurDiff = 6.10243E-6
DayNumber = 979 targetFunctionValue = 11.31634
predictFunctionValue = 11.31634 valurDiff = 1.14757E-6
DayNumber = 980 targetFunctionValue = 11.29151
predictFunctionValue = 11.29151 valurDiff = 6.88624E-6
DayNumber = 981 targetFunctionValue = 11.26652
predictFunctionValue = 11.26652 valurDiff = 1.22488E-6
DayNumber = 982 targetFunctionValue = 11.24137
predictFunctionValue = 11.24137 valurDiff = 7.90076E-6
DayNumber = 983 targetFunctionValue = 11.21605
predictFunctionValue = 11.21605 valurDiff = 6.28815E-6
DayNumber = 984 targetFunctionValue = 11.19058
predictFunctionValue = 11.19058 valurDiff = 6.75453E-7
DayNumber = 985 targetFunctionValue = 11.16495
predictFunctionValue = 11.16495 valurDiff = 7.05756E-6
DayNumber = 986 targetFunctionValue = 11.13915
predictFunctionValue = 11.13915 valurDiff = 4.99135E-6
DayNumber = 987 targetFunctionvalue = 11.11321
predictFunctionValue = 11.11321 valurDiff = 8.69072E-6
DayNumber = 988 targetFunctionValue = 11.08710
predictFunctionValue = 11.08710 valurDiff = 7.41462E-6

386

Dy Profl Engr Mr Santosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 989 targetFunctionValue = 11.06084
predictFunctionValue = 11.06084 valurDiff = 1.54419E-6
DayNumber = 990 targetFunctionValue = 11.03442
predictFunctionValue = 11.03442 valurDiff = 4.10382E-6
DayNumber = 991 targetFunctionValue = 11.00785
predictFunctionValue = 11.00785 valurDiff = 1.71356E-6
DayNumber = 992 targetFunctionValue = 10.98112
predictFunctionValue = 10.98112 valurDiff = 5.21117E-6
DayNumber = 993 targetFunctionValue = 10.95424
predictFunctionValue = 10.95424 valurDiff = 4.91220E-7
DayNumber = 994 targetFunctionValue = 10.92721
predictFunctionValue = 10.92721 valurDiff = 7.11803E-7
DayNumber = 995 targetFunctionValue = 10.90003
predictFunctionValue = 10.90003 valurDiff = 8.30447E-6
DayNumber = 996 targetFunctionvValue = 10.87270
predictFunctionValue = 10.87270 valurDiff = 6.86302E-6
DayNumber = 997 targetFunctionValue = 10.84522
predictFunctionValue = 10.84522 valurDiff = 6.56004E-6
DayNumber = 998 targetFunctionValue = 10.81759
predictFunctionValue = 10.81759 valurDiff = 6.24024E-6
DayNumber = 999 targetFunctionvValue = 10.78981
predictFunctionValue = 10.78981 valurDiff = 8.63897E-6
DayNumber = 1000 targetFunctionValue = 10.76181
predictFunctionValue = 10.76188 valurDiff = 7.69201E-6

maxErrorPerc = 1.482606020077711E-6
averkErrorPerc = 2.965212040155422E-9

The training processing results (that use the micro-batch method) are as follows:
e The maximum error is less than 0.00000148 percent.
« The average error is less than 0.00000000269 percent.

Figure 9-9 shows the chart of the training approximation results (using the micro-
batch method). Both charts practically overlap (actual values are in black, and predicted
values are in white).

387

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

1300 —

1050 =

1000 —

s.00 6.00 .00 8.00 9.00 10.00 1100 12.00 1100 14.00 15.00

day

Figure 9-9. Chart of the training approximation results (using the micro-batch
method)

Like with the normalized training data set, the normalized testing data set is broken
into a set of micro-batch files that are now the input to the testing process.
Listing 9-10 shows the ending fragment of the testing results after execution.

Listing 9-10. Ending Fragment of the Testing Processing Results

DayNumber = 6.00372 TargettValue = 11.99207
PredictedValue = 12.00232 DiffPerc = 3.84430E-6
DayNumber = 5.98287 TargettValue = 11.97248
PredictedValue = 11.98281 DiffPerc = 2.09221E-6
DayNumber = 5.96212 TargettValue = 11.95270
PredictedValue = 11.96312 DiffPerc = 6.72750E-6
DayNumber = 5.94146 TargettValue = 11.93275
PredictedValue = 11.94325 DiffPerc = 4.20992E-7
DayNumber = 5.92089 TargettValue = 11.91262
PredictedValue = 11.92320 DiffPerc = 1.27514E-6
DayNumber = 5.90042 TargettValue = 11.89231
PredictedvValue = 11.90298 DiffPerc = 8.38833E-6

388

Dr Prof Engr Mr Saniosh Kumar

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 5.88004 TargettValue = 11.
PredictedValue = 11.

DayNumber = 5.85977

PredictedValue = 11.

DayNumber = 5.83959

PredictedValue = 11.

DayNumber = 5.81952

PredictedValue = 11.

DayNumber = 5.79955
PredictedValue = 11
DayNumber = 5.77968
PredictedValue = 11
DayNumber = 5.75992

PredictedValue = 11.

DayNumber = 5.74026

PredictedValue = 11.

DayNumber = 5.72071

PredictedValue = 11.

DayNumber = 5.70128

PredictedValue = 11.

DayNumber = 5.68195

PredictedValue = 11.

DayNumber = 5.66274
PredictedValue = 11
DayNumber = 5.64364

PredictedValue = 11.

DayNumber = 5.62465
PredictedValue = 11
DayNumber = 5.60578

PredictedValue = 11.

DayNumber = 5.58703

PredictedValue = 11.

DayNumber = 5.56840

PredictedValue = 11.

88258 DiffPerc
TargettValue =
86200 DiffPerc
TargettValue =
84124 DiffPerc
TargettValue =
82031 DiffPerc
TargettValue =

.79920 DiffPerc

TargettValue =

.77792 DiffPerc

TargettValue =
75647 DiffPerc
TargettValue =
73484 DiffPerc
TargettValue =
71303 DiffPerc
TargettValue =
69105 DiffPerc
TargettValue =
66890 DiffPerc
TargettValue =

.64658 DiffPerc

TargettValue =
62409 DiffPerc
TargettValue =

.60143 DiffPerc

TargettValue =
57859 DiffPerc
TargettValue =
55559 DiffPerc
TargettValue =
53241 DiffPerc

11..

11..

11.

11,

11.

i

11.

14,

11.

11.

11..

19

11.

11,

11.

11.

87183
5.88660E-6
85116
4.55256E-6
83033
6.53740E-6
80932
2.55227E-6
78813
8.20570E-6
76676
4.91208E-7
74523
1.48133E-6
72352
3.68852E-6
70163
6.82806E-6
67958
4.31230E-6
65735
1.70449E-6
63495
7.91193E-6
61238
8.20057E-6
58964
4.52651E-6
56673
6.20537E-6
54365
7.37190E-6
52040
3.68228E-6

Dy Profl Engr Mr Santosh Kumar

389

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 5.54989
PredictedValue
DayNumber = 5.53150
PredictedValue
DayNumber = 5.51323
PredictedValue
DayNumber = 5.49509

PredictedValue = 11.

DayNumber = 5.47707
PredictedValue = 11
DayNumber = 5.45918

PredictedValue = 11.

DayNumber = 5.44142

PredictedValue = 11.

DayNumber = 5.42379

PredictedValue = 11.

DayNumber = 5.40629

PredictedValue = 11.

DayNumber = 5.38893
PredictedValue = 11
DayNumber = 5.37169
PredictedValue = 11
DayNumber = 5.35460
PredictedValue = 11
DayNumber = 5.33763

PredictedValue = 11.

DayNumber = 5.32081
PredictedValue
DayNumber = 5.30412

PredictedValue = 11.

DayNumber = 5.28758

PredictedValue = 11.

DayNumber = 5.27118

PredictedValue = 11.

390

11.

b I

2.

11.

TargettValue =
50907 DiffPerc
TargettValue
48556 DiffPerc
TargettValue
46188 DiffPerc
TargettValue =
43804 DiffPerc
TargettValue =

.41403 DiffPerc

TargettValue =
38986 DiffPerc
TargettValue =
36551 DiffPerc
TargettValue =
34101 DiffPerc
TargettValue =
31634 DiffPerc
Targettvalue =

.29151 DiffPerxc

TargettvValue =

.26652 DiffPerc

TargettValue

.24137 DiffPerc

TargettValue
21605 DiffPerc
TargettValue =
19058 DiffPerc
TargettValue =
16495 DiffPerc
Targettvalue =
13915 DiffPerc
TargettValue
11321 DiffPerc

Dy Profl Engr Mr Santosh Kumar

11.

11.

11.

11.

11.

11.

11.

i

1t.,

a1

11.

11..

11,

1.,

11.

11.

11.

49698
2.05114E-6
47340
3.10919E-6
44965
1.03517E-6
42573
6.10184E-7
40165
7.53367E-6
37740
5.25199E-6
35299
6.09026E-6
32841
6.09049E-6
30368
1,13713E=6
27878
6.88165E-6
25371
1.22300E-6
22849
7.89661E-6
20311
6.30025E-6
17756
6.76200E-7
15186
7.04606E-6
12601
4.98925E-6
09999
8.69060E-6

CHAPTERQ APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

DayNumber = 5.25492 TargettValue = 11.07382
PredictedValue = 11.08710 DiffPerc = 7.41171E-6
DayNumber = 5.23880 TargettValue = 11.04749
PredictedValue = 11.06084 DiffPerc = 1.54138E-6
DayNumber = 5.22283 TargettValue = 11.02101
PredictedValue = 11.03442 DiffPerc = 4.09728E-6
DayNumber = 5.20701 TargettValue = 10.99437
PredictedValue = 11.00785 DiffPerc = 1.71899E-6
DayNumber = 5.19133 TargettValue = 10.96758
PredictedValue = 10.98112 DiffPerc = 5.21087E-6
DayNumber = 5.17581 TargettValue = 10.94064
PredictedValue = 10.95424 DiffPerc = 4.97273E-7
DayNumber = 5.16043 TargettValue = 10.91355
PredictedValue = 10.92721 DiffPerc = 7.21563E-7
DayNumber = 5.14521 TargettValue = 10.88630
PredictedValue = 10.90003 DiffPerc = 8.29551E-6
DayNumber = 5.13013 TargettValue = 10.85891
PredictedValue = 10.87270 DiffPerc = 6.86988E-6
DayNumber = 5.11522 TargettValue = 10.83136
PredictedValue = 10.84522 DiffPerc = 6.55538E-6
DayNumber = 5.10046 TargettValue = 10.80367
PredictedValue = 10.81759 DiffPerc = 6.24113E-6
DayNumber = 5.08585 TargettValue = 10.77584
PredictedValue = 10.78981 DiffPerc = 8.64007E-6

maxErrorPerc = 9.002677165459051E-6
averErrorPerc = 4.567068981414947E-6

The testing processing results (using the micro-batch method) are as follows:
e The maximum error is less than 0.00000900 percent.
« The average error is less than 0.00000457 percent.

Figure 9-10 shows the chart of the testing processing results (using the micro-batch
method). Again, both charts practically overlap (actual values are black, and predicted
values are white).

391

Dy Profl Engr Mr Santosh Kumar

CHAPTER 9 APPROXIMATING CONTINUOUS FUNCTIONS WITH COMPLEX TOPOLOGY

oo —

5.00 6.00 7.00 %.00 9.00 10.00 11.00 12,00 13.00 14.00 15.00

day

Figure 9-10. Chart of the testing processing results (using the micro-batch
method)

Summary

Neural networks have problems approximating continuous functions with complex
topologies. It is difficult to obtain a good-quality approximation for such functions. This
chapter showed that the micro-batch method is able to approximate such functions with
high-precision results. Up to now you used neural networks to solve the regression tasks.
In the next chapter, you will learn how to use neural networks for the classification of
objects.

392

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 10

Using Neural Networks
to Classify Objects

In this chapter, you'll use a neural network to classify objects. Classification means
recognizing various objects and determining the class to which those objects belong. As
with many areas of artificial intelligence, classification is easily done by humans but can
be quite difficult for computers.

Example 6: Classification of Records

For this example, you are presented with five books, and each book belongs to a different
area of human knowledge: medical, programming, engineering, electrical, or music. You
are also given the three most frequently used words in each book. See Listing 10-1.

Many records are provided for this example, and each record includes three words. If
all three words in a record belong to a certain book, then the program should determine
that the record belongs to that book. If a record has a mixture of words that don’t belong
to any of the five books, then the program should classify that record as belonging to an
unknown book.

This example looks simple; in fact, it might look like it does not need a neural
network and that the problem could be resolved by using regular programming logic.
However, when the volume of books and records becomes much larger, with a large
number of unpredictable combinations of words included in each record and with
the condition that only a certain small number of words from one book is sufficient
for a record to belong to a certain book, then artificial intelligence is needed to
handle such a task.

393
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_10

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Listing 10-1. List of Five Books with Three Most Frequent Words

Book 1. Medical.
surgery, blood, prescription,

Book 2. Programming.
file, java, debugging

Book3. Engineering.
combustion, screw, machine

Book 4. Electrical.
volt, solenoid, diode

Book 5. Music.
adagio, hymn, opera,

Extra words. We will use words in this list to include them in the test
dataset.

customer, wind, grass, paper, calculator, flower, printer ,desk, photo,
map, pen, floor.

To simplify the processing, you assign numbers to all words and use those numbers
instead of words when building the training and testing data sets. Table 10-1 shows the
words-to-numbers cross-reference.

Table 10-1. Words-to-Numbers Cross-Reference

Word Assigned Number

surgery
blood
prescription
file

java

debugging

~N OO O AW N =

combustion

(continued)

394

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-1. (continued)

Word Assigned Number
screw 8
machine 9
volt 10
solenoid 11
diode 12
adagio 13
hymn 14
opera 15
customer 16
wind 17
grass 18
paper 19
calculator 20
flower 21
printer 22
desk 23
photo 24
map 25
pen 26
floor 27

Training Data Set

Each record in the training data set consists of three fields that hold words from the

list of most frequently used words in the books. Also included in each record are five
target fields, indicating the book to which the record belongs. Notice that this is the

first example in the book where the network has five target fields. This information is
used for training the network. For example, the combination 1, 0, 0, 0, 0 means book #1;

395

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

the combination 0, 1, 0, 0, 0 means book #2; and so on. Also, for each book, you need to
build six records in the training data set instead of one. These six records include all the
possible permutation of words in a record. Table 10-2 shows all the possible permutation
of words in all records. I'm using italics to highlight the portion of each record that holds
the word numbers.

Table 10-2. Permutation of Words in All Records

Records for Book 1

1 2 3 1 0 0 0 0
1 3 2 1 0 0 0 0
2 1 3 1 0 0 0 0
2 3 1 1 0 0 0 0
3 1 2 1 0 0 0 0
3 2 1 1 0 0 0 0
Records for Book 2

4 5 6 0 1 0 0 0
4 6 5 0 1 0 0 0
5 4 6 0 1 0 0 0
5 6 4 0 1 0 0 0
6 4 5 0 1 0 0 0
6 5 4 0 1 0 0 0
Records for Book 3

7 8 9 0 0 1 0 0
7 9 8 0 0 1 0 0
8 7 9 0 0 1 0 0
8 9 7 0 0 1 0 0
9 7 8 0 0 1 0 0
9 8 7 0 0 1 0 0

(continued)

396

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-2. (continued)

Records for Book 4

10 11 12 0 0 0 1 0
10 12 i1 0 0 0 1 0
11 10 12 0 0 0 1 0
11 12 10 0 0 0 1 0
12 10 11 0 0 0 1 0
12 11 10 0 0 0 1 0
Records for Book 5

13 14 '/ 0 0 0 0 1
13 15 14 0 0 0 0 1
14 13 15 0 0 0 0 1
14 15 13 0 0 0 0 1
15 13 14 0 0 0 0 1
5 14 13 0 0 0 0 1

Putting it all together, Table 10-3 shows the training data set.

Table 10-3. Training Data Set

Word1 Word2 Word3 Target1 Target2 Target3 Target4 Target5

1 1

1

W w NN =

N = W = w N
- W N W

—_

o O O o o o

o o O o o o

o o O o o o

o o O o o o

(continued)

397

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-3. (continued)

Word1

Word3 Target1 Target2 Target3 Targetd Targetb

Word2

12
11

a
12
10
12
10
1
14
15
13
15
13
14

10
10
11

12
10
"
10
15
14
15
13
14
13

1

12
12
13
13
14
14
15
15

398

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Network Architecture

The network has an input layer with three input neurons, six hidden layers with seven
neurons each, and an output layer with five neurons. Figure 10-1 shows the network

architecture.
Input Output
Layer Hidden Layers Layer
NP
o= ZeS\\e
o —:=2 R O RE0
o — N0
RI7-=0

Figure 10-1. Network architecture

Testing Data Set

The testing data set consists of records with randomly included words/numbers. These
records don’t belong to any single book, despite that some of them include one or two
words from the most frequently used list. Table 10-4 shows the testing data set.

399

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-4. Testing Data Set

Wordl Word2 Word3 Target1 Target2 Target3 Target4 Targetb

1 2 16 0 0 0 0 0
4 17 5 0 0 0 0 0
8 9 18 0 0 0 0 0
19 10 11 0 0 0 0 0
15 20 13 0 0 0 0 0
27 1 26 0 0 0 0 0
14 23 22 0 0 0 0 0
21 20 18 0 0 0 0 0
25 23 24 0 0 0 0 0
11 9 6 0 0 0 0 0
3 5 8 0 0 0 0 0
6 10 15 0 0 0 0 0
16 17 18 0 0 0 0 0
19 1 8 0 0 0 0 0
27 23 17 0 0 0 0 0

There is no need to include the target columns in the testing file; however, they are
included for convenience (to compare the predicted and actual results). These columns
are not used for processing. As usual, you need to normalize the training and testing data
sets on the interval [-1, 1]. Because this example features multiple neurons in the input
and output layers, you will need the normalization source code.

400

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Program Code for Data Normalization

Listing 10-2 shows the program code that normalizes the training and testing data sets.

Listing 10-2. Program Code for Data Normalization

// This program normalizes all columns of the input CSV dataset putting the
// result in the output CSV file.

/7

// The first column of the input dataset includes the X point value and the
// second column of the input dataset includes the value of the function at
// the point X.

// =====================z=z================sssssssssssssssssszsss

package sample5 noxm;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.PrintWriter;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.nio.file.*;

public class Sample5 Norm

{
// Interval to normalize
static double Nh = 1;
static double N1 = -1;

// First column
static double minXPointDl
static double maxXPointDh

1.00;
1000.00;

// Second column - target data
static double minTargetValueDl = 60.00;
static double maxTargetValueDh = 1600.00;

401

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

public static double normalize(double value, double Dh, double D1)

{
double normalizedValue = (value - D1)*(Nh - N1)/(Dh - D1) + NI1;

return normalizedValue;

}

public static void main(String[] args)

{

// Normalize train file
String inputFileName = "C:/Book_Examples/Sample5 Train Real.csv";
String outputNormFileName = "C:/Book Examples/Sample5 Train Norm.csv";

// Normalize test file
// String inputFileName = "C:/Book_Examples/Sample5 Test Real.csv";
// String outputNormFileName = "C:/Book Examples/Sample5 Test Norm.csv";

BufferedReader br = null;
PrintWriter out = null;

String line = "";

String cvsSplitBy = ",";
double inputXPointValue;
double targetXPointValue;

double normInputXPointValue;
double normTargetXPointValue;

String strNormInputXPointValue;
String strNormTargetXPointValue;

String fullline;
int 1 = -1;

try

{
Files.deleteIfExists(Paths.get(outputNormFileName));

br = new BufferedReader(new FileReader(inputFileName));
out = new
PrintWriter(new BufferedWriter(new FileWriter(outputNormFileName)));
402

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

while ((line = br.readlLine()) != null)
{

it+;
if(i == Q)
{
// Write the label line
out.println(line);
}
else
{
// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

inputXPointValue = Double.parseDouble(workFields[0]);
targetXPointValue = Double.parseDouble(workFields[1]);

// Normalize these fields
normInputXPointValue =
normalize(inputXPointValue, maxXPointDh, minXPointDl);
normTargetXPointValue =
normalize(targetXPointValue, maxTargetValueDh, minTargetValueDl);

// Convert normalized fields to string, so they can be inserted
//into the output CSV file

strNormInputXPointValue = Double.toString(normInput
XPointValue);

strNormTargetXPointValue = Double.toString(normTarget
XPointValue);

// Concatenate these fields into a string line with
//coma separator
fullline =
strtNormInputXPointValue + "," + strNormTargetXPointValue;

// Put fullline into the output file
out.println(fullline);

} // End of IF Else

403

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS
} // end of while
} // end of TRY

catch (FileNotFoundException e)

{
e.printStackTrace();
System.exit(1);
|
catch (IOException io)
{
io.printStackTrace();
¥
finally
{
if (br != null)
{
try
{
br.close();
out.close();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
}
}
404

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-5 shows the normalized training data set.

Table 10-5. Normalized Training Data Set

Word 1 Word 2 Word 3 Target1 Target2 Target3 Target4 Target5
-1 -0.966101695 -0.93220339 1 -1 -1 -1 -1
-1 -0.93220339 -0.966101695 1 -1 -1 -1 -1
-0.966101695 -1 -0.93220339 1 -1 -1 -1 -1
-0.966101695 -0.93220339 -1 1 -1 -1 -1 -1
-0.93220339 -1 -0.966101695 1 -1 -1 -1 -1
-0.93220339 -0.966101695 -1 1 -1 -1 -1 -1
-0.898305085 -0.86440678 -0.830508475 -1 1 -1 -1 -1
-0.898305085 -0.830508475 -0.86440678 -1 1 -1 -1 -1
-0.86440678 -0.898305085 -0.830508475 -1 1 -1 -1 -1
-0.86440678 -0.830508475 -0.898305085 -1 1 -1 -1 -1
-0.830508475 -0.898305085 -0.86440678 -1 1 -1 -1 -1
-0.830508475 -0.86440678 -0.898305085 -1 1 -1 -1 -1
-0.796610169 -0.762711864 -0.728813559 -1 -1 1 -1 -1
-0.796610169 -0.728813559 -0.762711864 -1 -1 1 -1 -1
-0.762711864 -0.796610169 -0.728813559 -1 -1 1 -1 -1
-0.762711864 -0.728813559 -0.796610169 -1 -1 1 -1 -1
-0.728813559 -0.796610169 -0.762711864 -1 1 1 -1 -1
-0.728813559 -0.762711864 -0.796610169 -1 -1 1 -1 -1
-0.694915254 -0.661016949 -0.627118644 -1 -1 -1 1 -1
-0.694915254 -0.627118644 -0.661016949 -1 -1 -1 1 -1
-0.661016949 -0.694915254 -0.627118644 -1 -1 -1 1 -1
-0.661016949 -0.627118644 -0.694915254 -1 -1 -1 1 -1
-0.627118644 -0.694915254 -0.661016949 -1 -1 -1 1 -1
-0.627118644 -0.661016949 -0.694915254 -1 -1 -1 1 -1
(continued)
405

Dy Prof Engr My

Saniosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Table 10-5. (continued)

Word 1

Word 2

Word 3

Target 1

Target 2

Target 3

Target 4 Target5

-0.593220339
-0.593220339
-0.559322034
-0.559322034
-0.525423729
-0.525423729

-0.559322034
-0.525423729
-0.593220339
-0.525423729
-0.593220339
-0.559322034

-0.525423729
-0.559322034
-0.525423729
-0.593220339
-0.559322034
-0.593220339

Table 10-6 shows the normalized testing data set.

Table 10-6. Normalized Testing Data Set

Word 1

Word 2

Word 3

Target 1

Target 2

Target 3

Target 4

Target 5

1
-0.898305085
-0.762711864
-0.389830508
-0.525423729
-0.118644068
-0.559322034
-0.322033898
-0.186440678
-0.661016949
-0.93220339

-0.830508475
-0.491525424
-0.389830508
-0.118644068

-0.966101695
-0.457627119
-0.728813559
-0.694915254
-0.355932203
4
-0.254237288
-0.355932203
-0.254237288
-0.728813559
-0.86440678
-0.69491525
-0.45762711
-1
-0.25423728

-0.491525424
-0.86440678

-0.423728814
-0.661016949
-0.593220339
0.152542373

-0.288135593
-0.423728814
-0.220338983
-0.830508475
-0.762711864
-0.525423729
-0.423728814
-0.762711864
-0.457627119

406

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Program Code for Classification

Listing 10-3 shows the classification program code.

Listing 10-3. Classification Program Code

// Example of using neural network for classification of objects.

// The normalized training/testing files consists of records of the following
// format: 3 input fields (word numbers)and 5 target fields (indicate the book
// the record belongs to).

// ============z====z=====z=z=====s=s=sss=SsssSsSsSsSSSsSsSsSsSsSSSsSsIssssss

package sample6;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.localDate;
import java.time.Month;

import java.time.Zoneld;

import java.util.Arraylist;

407

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

import java.util.Calendar;
import java.util.Date;
import java.util.list;
import java.util.locale;
import java.util.Properties;

import org.encog.Encog;

import org.encog.engine.network.activation.ActivationTANH;
import org.encog.engine.network.activation.ActivationRelLU;
import org.encog.ml.data.MLData;

import org.encog.ml.data.MLDataPair;

import org.encog.ml.data.MLDataSet;

import org.encog.ml.data.buffer.MemoryDataloader;

import org.encog.ml.data.buffer.codec.CSVDataCODEC;

import org.encog.ml.data.buffer.codec.DataSetCODEC;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.BasiclLayer;

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.Serieslines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

408

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

public class Sample6 implements ExampleChart<XYChart>
{

// Interval to normalize data

static double Nh;

static double NI;

// Normalization parameters for workBook number
static double minWordNumbexDl;
static double maxWordNumbexDh;

// Normalization parameters for target values
static double minTargetValueDl;
static double maxTargetValueDh;

static double doublePointNumber = 0.00;

static int intPointNumber = 0;

static InputStream input = null;

static double[] arrPrices = new double[2500];
static double normInputWordNumber 01 = 0.00;
static double normInputWordNumber 02 = 0.00;
static double normInputWordNumber 03 = 0.00;
static double denormInputWordNumber 01 = 0.00;
static double denormInputWordNumber 02 = 0.00;
static double denormInputWordNumber 03 = 0.00;
static double normTargetBookNumber 01 = 0.00;

static double normTargetBookNumber 02 = 0.00;
static double normTargetBookNumber 03 = 0.00;
static double normTargetBookNumber 04 = 0.00;
static double normTargetBookNumber 05 = 0.00;

static double normPredictBookNumber 01 = 0.00;
static double normPredictBookNumber 02 = 0.00;
static double normPredictBookNumber 03 = 0.00;
static double normPredictBookNumber 04 = 0.00;
static double normPredictBookNumber 05 = 0.00;
static double denormTargetBookNumber 01 = 0.00;
static double denormTargetBookNumber 02 = 0.00;
static double denormTargetBookNumber 03 = 0.00;

409

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

static double denormTargetBookNumber 04 = 0.00;
static double denormTargetBookNumber 05 = 0.00;
static double denormPredictBookNumber 01 = 0.00;

static double denormPredictBookNumber 02 = 0.00;
static double denormPredictBookNumber 03 = 0.00;
static double denormPredictBookNumber 04 = 0.00;
static double denormPredictBookNumber 05 = 0.00;
static double normDifferencePerc = 0.00;

static double denormPredictXPointValue 01 = 0.00;
static double denormPredictXPointValue 02 = 0.00;
static double denormPredictXPointValue 03 = 0.00;
static double denormPredictXPointValue 04 = 0.00;
static double denormPredictXPointValue 05 = 0.00;

static double valueDifference = 0.00;
static int numberOfInputNeurons;
static int numberOfOutputNeurons;
static int intNumberOfRecordsInTestFile;
static String trainFileName;

static String priceFileName;

static String testFileName;

static String chartTrainFileName;
static String chartTestFileName;
static String networkFileName;

static int workingMode;

static String cvsSplitBy = ",";
static int returnCode;

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new ArraylList<Double>();

static XYChart Chart;

410

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

@Override
public XYChart getChart()

{

// Create Chart
Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColor
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColor(new Color (255, 255, 255));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColor(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

411

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

// Interval to normalize data
Nh = 43
Nl = -1;

// Normalization parameters for workBook number
double minWordNumberDl = 1.00;
double maxWordNumbexrDh = 60.00;

// Normalization parameters for target values
minTargetValueDl = 0.00;
maxTargetValueDh = 1.00;

// Configuration
// Set the mode to run the program
workingMode = 1; // Training mode

if(workingMode == 1)
{
// Training mode
intNumberOfRecordsInTestFile = 31;
trainFileName = "C:/My Neural Network Book/Book Examples/Sample6
Norm Train File.csv";

File file1
File file2

new File(chartTrainFileName);
new File(networkFileName);

if(filel.exists())
filel.delete();

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the return code variable

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);
} // End the training mode

412

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

else
{
// Testing mode
intNumberOfRecordsInTestFile = 16;
testFileName = "C:/My Neural Network Book/Book Examples/Sample6
Norm Test File.csv";
networkFileName =
"C:/My_Neural Network Book/Book Examples/Sample6 Saved Network
File.csv";
numberOfInputNeurons = 3;
numberOfOutputNeurons = 5;

loadAndTestNetwork();
}

Encog.getInstance().shutdown();
return Chart;

} // End of the method

// Load CSV to memory.
// @return The loaded dataset.
e
public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal, boolean headers, CSVFormat format, boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);

MemoryDataloader load = new MemoryDataloader(codec);

MLDataSet dataset = load.external2Memory();

return dataset;

413

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

// The main method.
// @param Command line arguments. No arguments are used.
/| ===========z==z=====z=====s=========s=ss=ss=ss==s=ssss======
public static void main(String[] args)
{
ExampleChart<XYChart> exampleChart = new Sample6();
XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

static public int trainvalidateSaveNetwork()
{
// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numbexrOfInputNeurons,
numberOfOutputNeurons,true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,3));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasicLayer(new ActivationTANH(),true,7));
network.addLayer(new BasicLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

414

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,5));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;

do
{

train.iteration();
System.out.println("Epoch #" + epoch +

train.getError());

Exrror:" +

epoch++;

if (epoch >= 1000 && network.calculateError(trainingSet) >
0. 0000000000000012)

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while (network.calculateError(trainingSet) > 0.0000000000000011);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),
network);

System.out.println("Neural Network Results:");
int m = 0;

for(MLDataPair pair: trainingSet)
{

m++;

415

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS
final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results

normInputWordNumber 01
normInputWordNumber 02
normInputWordNumber 03

inputData.getData(0);
inputData.getData(1);
inputData.getData(2);

normTargetBookNumber 01
normTargetBookNumber 02
normTargetBookNumber 03
normTargetBookNumber 04
normTargetBookNumber 05

actualData.getData(0);
actualData.getData(1);
actualData.getData(2);
actualData.getData(3);
actualData.getData(4);

normPredictBookNumber 01 = predictData.getData(0);
normPredictBookNumber 02 = predictData.getData(1);
normPredictBookNumber 03 = predictData.getData(2);
normPredictBookNumber 04 = predictData.getData(3);
normPredictBookNumber 05 = predictData.getData(4);

// De-normalize the results

denormInputWordNumber 01 = ((minWordNumberDl -
maxWordNumbexDh)*normInputWordNumber 01 - Nh*minWordNumberDl +
maxWordNumberDh *N1)/(N1 - Nh);

denormInputWordNumber 02 = ((minWordNumberDl -
maxiWordNumbexDh)*normInputWordNumber 02 - Nh*minWordNumberDl +
maxWordNumbexDh *N1)/(N1 - Nh);

denormInputWordNumber 03 = ((minWordNumberDl -
maxWordNumbexDh)*normInputWordNumber 03 - Nh*minWordNumberDl +
maxWordNumbexDh *N1)/(N1 - Nh);

denormTargetBookNumber 01 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

416

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

denormTargetBookNumber 02 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 02 -

Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 03 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 03 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

Nh);

denormTargetBookNumber 04 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

Nh);

denormTargetBookNumber 05 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 01 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

Nh);

denormPredictBookNumber 02 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 03 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 03 -

Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);
denormPredictBookNumber 04 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 05 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

System.out.println ("RecordNumber = " + m);

+

System.out.println ("denormTargetBookNumber 01
denormTargetBookNumber 01 + "denormPredictBookNumber 01 = " +
denormPredictBookNumber 01);

417

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

418

System.out.println ("denormTargetBookNumber 02 = " +
denormTargetBookNumber 02 + "denormPredictBookNumber 02
denormPredictBookNumber 02);

System.out.println ("denormTargetBookNumber 03 = " +
denormTargetBookNumber 03 + "denormPredictBookNumber 03
denormPredictBookNumber 03);

System.out.println ("denormTargetBookNumber 04 = " +
denormTargetBookNumber 04 + "denormPredictBookNumber 04
denormPredictBookNumber 04);

System.out.println ("denormTargetBookNumber 05 = " +
denormTargetBookNumber 05 + "denormPredictBookNumber 05
denormPredictBookNumber 05);

//System.out.println (" ");

// Print the classification results
if(Math.abs(denormPredictBookNumber 01) > 0.85)
if(Math.abs(denormPredictBookNumber 01) > 0.85
Math.abs(denormPredictBookNumber 02) < 0.2
Math.abs(denormPredictBookNumber 03) < 0.2
Math.abs(denormPredictBookNumber 04) < 0.2
Math.abs (denormPredictBookNumber 05) < 0.2)
{
System.out.println ("Record 1 belongs to book 1");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 1");
System.out.println (" ");

}

if(Math.abs(denormPredictBookNumber 02) > 0.85)

if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) > 0.85 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Math.abs(denormPredictBookNumber 05) < 0.2)
{
System.out.println ("Record 2 belongs to book 2");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 2");
System.out.println (" ");

}

if(Math.abs(denormPredictBookNumber 03) > 0.85)
if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) > 0.85 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) < 0.2)
{
System.out.println ("Record 3 belongs to book 3");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 3");
System.out.println (" ");

}

if(Math.abs(denormPredictBookNumber 04) > 0.85)

if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denoxrmPredictBookNumber 04) > 0.85 &
Math.abs(denormPredictBookNumber 05) < 0.2)

{
System.out.println ("Record 4 belongs to book 4");

System.out.println (" ");
}

419

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

else
{
System.out.println ("Wrong results for record 4");
System.out.println (" ");

}

if(Math.abs(denoxrmPredictBookNumber 05) > 0.85)
if(Math.abs(denoxrmPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs (denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) > 0.85)
{
System.out.println ("Record 5 belongs to book 5");
System.out.println (" ");
}

else

{

System.out.println ("Wrong results for record 5");
System.out.println (" ");

}
} // End for pair loop

returnCode = 0;
return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();

420

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictPercent = 0;

double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double normInputWordNumberFromRecord = 0.00;
double normTargetBookNumberFromRecord = 0.00;
double normPredictXPointValueFromRecord = 0.00;
BasicNetwork network;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory

MLDataSet testingSet =

loadCSV2Memory(testFileName, numberOfInputNeurons,
number0fOutputNeurons, true,CSVFormat.ENGLISH, false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject (new
File(networkFileName));

int 1 =03

for (MLDataPair pair: testingSet)

{

i++;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputWordNumberFromRecord = inputData.getData(0);
normTargetBookNumberFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

421

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10

422

USING NEURAL NETWORKS TO CLASSIFY OBJECTS

denormInputWordNumber 01 = ((minWordNumberDl -maxWordNumberDh)*

normInputWordNumber 01 - Nh*minWordNumberDl + maxWordNumbexDh
*N1)/(N1 - Nh);

denormInputWordNumber 02 = ((minWordNumberDl - maxWordNumberDh)*

normInputWordNumber 02 - Nh*minWordNumberDl + maxWordNumbexrDh
*N1)/(N1 - Nh);

denormInputWordNumber 03 = ((minWordNumbexrDl -
maxWordNumbexDh)*normInputWordNumber 03 - Nh*minWordNumberDl +
maxWordNumbexDh *N1)/(N1 - Nh);

denormTargetBookNumber 01 = ((minTargetValueDl - maxTargetValueDh)*
normTargetBookNumber 01 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 02 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 03 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 03 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 04 = ((minTargetValueDl - maxTarget
ValueDh)*normTargetBookNumber 04 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 05 = ((minTargetValueDl - maxTarget
ValueDh)*normTargetBookNumber 05 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 01 =((minTargetValueDl - maxTarget
ValueDh)*normPredictBookNumber 01 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 02 =((minTargetValueDl - maxTarget
ValueDh)*normPredictBookNumber 02 -Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

denormPredictBookNumber 03 =((minTargetValueDl - maxTarget
ValueDh)*normPredictBookNumber 03 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 04 =((minTargetValueDl - maxTarget
ValueDh)*normPredictBookNumber 04 - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 05 =((minTargetValueDl - maxTarget
ValueDh)*normPredictBookNumber 05 -Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

System.out.println ("RecordNumber = " + i);
System.out.println ("denormTargetBookNumber 01 = " +
denormTargetBookNumber 01 + "denormPredictBookNumber 01 = " +
denormPredictBookNumber 01);
System.out.println ("denormTargetBookNumber 02 = " +
denormTargetBookNumber 02 + "denormPredictBookNumber 02 = " +
denormPredictBookNumber 02);
System.out.println ("denormTargetBookNumber 03 = " +
denormTargetBookNumber 03 + "denormPredictBookNumber 03 = " +
denormPredictBookNumber 03);
System.out.println ("denormTargetBookNumber 04 = " +
denormTargetBookNumber 04 + "denormPredictBookNumber 04 = " +
denormPredictBookNumber 04);
System.out.println ("denormTargetBookNumber 05 = " +
denormTargetBookNumber 05 + "denormPredictBookNumber 05 = " +
denormPredictBookNumber 05);
//System.out.println (" ");
if(Math.abs(denormPredictBookNumber 01) > 0.85 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
423

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

424

Math.abs(denormPredictBookNumber 04) < 0.2
Math.abs(denormPredictBookNumber 05) < 0.2

&

Math.abs(denormPredictBookNumber 01) < 0.2 &
0.85 &
0.2
0.2
0.2

Math.abs(denormPredictBookNumber 02)
Math.abs (denormPredictBookNumber 03)
Math.abs (denormPredictBookNumber 04)
Math.abs (denormPredictBookNumber 05)

Math.abs (denormPredictBookNumber 01) < 0.

Math.abs(denormPredictBookNumber 02)
Math.abs (denormPredictBookNumber 03)
Math.abs(denormPredictBookNumber 04)
Math.abs(denormPredictBookNumber 05)

&

0.85
0.2
0.2
0.2

Math.abs(denormPredictBookNumber 01) < 0.2 &
0.2
0.85
0.2
0.2

Math.abs (denormPredictBookNumber 02)
Math.abs (denormPredictBookNumber 03)
Math.abs (denormPredictBookNumber 04)
Math.abs(denormPredictBookNumber 05)

Math.abs(denormPredictBookNumber 01) < O.

| |
Math.

Math.abs(denormPredictBookNumber 02)
Math.abs (denormPredictBookNumber 03)
Math.abs(denormPredictBookNumber 04)
Math.abs(denormPredictBookNumber 05)

abs (denormPredictBookNumber 01) < 0.2
Math.abs(denormPredictBookNumber 02)
Math.abs(denormPredictBookNumber 03)
Math.abs (denormPredictBookNumber 04)
Math.abs (denormPredictBookNumber 05)

Dy Profl Engr Mr Santosh Kumar

<
>
<
<

AV A AN
o O © o

<
<
<
>

&
&

X >

joS]

(o.5]

2 oo

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

{
System.out.println ("Record belong to some book");
System.out.println (" ");
}
else
{
System.out.println ("Unknown book");
System.out.println (" ");
}

} // End for pair loop
} // End of the method
} // End of the class

Listing 10-4 shows the code fragment of the training method.

Listing 10-4. Code Fragment of the Training Method

static public int trainValidateSaveNetwork()
{
// Load the training CSV file in memory
MLDataSet trainingSet =
loadCSV2Memory (trainFileName, numberOfInputNeurons,
numberOfOutputNeurons,true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,3));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

425

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

426

network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,5));

network.getStructure().finalizeStructure();
network.reset();

//Train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;

do
{
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" +
train.getError());
epoch++;

if (epoch >= 1000 && network.calculateError(trainingSet) >
0.0000000000000012)

{

returnCode = 1;
System.out.println("Try again");
return returnCode;

}

} while (network.calculateError(trainingSet) > 0.0000000000000011);

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");

double sumNoxrmDifferencePerc = 0.00;
double averNormDifferencePerc = 0.00;
double maxNoxrmDifferencePerc = 0.00;

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS
it m = 03

for(MLDataPair pair: trainingSet)
{

M++;
final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results

normInputWordNumber 01
normInputWordNumber 02
normInputWordNumber 03

inputData.getData(0);
inputData.getData(1);
inputData.getData(2);

normTargetBookNumber 01
normTargetBookNumber 02
normTargetBookNumber 03
normTargetBookNumber_04

actualData.getData(0);
actualData.getData(1);
actualData.getData(2);
actualData.getData(3);
actualData.getData(4);

normTargetBookNumber 05

normPredictBookNumber 01 = predictData.getData(0);
normPredictBookNumber 02 = predictData.getData(1);
normPredictBookNumber 03 = predictData.getData(2);
normPredictBookNumber 04 = predictData.getData(3);
normPredictBookNumber 05 = predictData.getData(4);

denormInputWordNumber 01 = ((minWordNumberDl -maxWordNumberDh)*
normInputWordNumber 01 - Nh*minWordNumberDl +
maxWordNumbexDh *N1)/(N1 - Nh);

denormInputWordNumber 02 = ((minWordNumbexrD1l -maxWordNumberDh)*
normInputWordNumber 02 - Nh*minWordNumberDl +
maxWordNumberDh *N1)/(N1 - Nh);

denormInputWordNumber 03 = ((minWordNumberDl -maxWordNumberDh)*
normInputWordNumber 03 - Nh*minWordNumberDl +
maxWordNumbexrDh *N1)/(N1 - Nh);

427

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

428

denormTargetBookNumber 01 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormTargetBookNumber 02 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormTargetBookNumber 03 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 03 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormTargetBookNumber 04 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/ (N1

denormTargetBookNumber 05 = ((minTargetValueDl
maxTargetValueDh)*normTargetBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormPredictBookNumber 01 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormPredictBookNumber 02 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormPredictBookNumber 03 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 03 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormPredictBookNumber 04 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

denormPredictBookNumber 05 =((minTargetValueDl
maxTargetValueDh)*normPredictBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1

Dy Profl Engr Mr Santosh Kumar

Nh);

Nh) ;

Nh);

Nh);

Nh);

Nh);

Nh);

Nh);

Nh);

Nh);

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

System.out.println ("RecordNumber = " + m);

System.out.println ("denormTargetBookNumber 01 = " +

denormTargetBookNumber_01 + "denormPredictBookNumber 01

denormPredictBookNumber 01);

System.out.println ("denormTargetBookNumber 02 = " +

denormTargetBookNumber 02 + "denormPredictBookNumber 02

denormPredictBookNumber 02);

System.out.println ("denormTargetBookNumber 03 = " +

denormTargetBookNumber 03 + "denormPredictBookNumber 03

denormPredictBookNumber 03);

System.out.println ("denormTargetBookNumber 04 = " +

denormTargetBookNumber 04 + "denormPredictBookNumber 04

denormPredictBookNumber 04);

System.out.println ("denormTargetBookNumber 05 = " +

denormTargetBookNumber 05 + "denormPredictBookNumber 05

denormPredictBookNumber 05);
//System.out.println (" ");

// Print the classification results in the log
if(Math.abs(denormPredictBookNumber 01) > 0.85)
if(Math.abs(denormPredictBookNumber 01) > 0.85 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) < 0.2)

{

System.out.println ("Record 1 belongs to book 1");

System.out.println (" ");
}

else

{

System.out.println ("Wrong results for record 1");

System.out.println (" ");
}

Dy Profl Engr Mr Santosh Kumar

429

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

if(Math.abs(denormPredictBookNumber 02) > 0.85)
if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) > 0.85 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs (denormPredictBookNumber 05) < 0.2)
{
System.out.println ("Record 2 belongs to book 2");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 2");
System.out.println (" ");

}

if(Math.abs(denormPredictBookNumber 03) > 0.85)
if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs (denormPredictBookNumber 03) > 0.85 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) < 0.2)
{
System.out.println (“"Record 3 belongs to book 3");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 3");
System.out.println (" ");

}

if(Math.abs(denormPredictBookNumber 04) > 0.85)
if(Math.abs(denormPredictBookNumber 01) < 0.2
Math.abs(denormPredictBookNumber 02) < 0.2
Math.abs (denormPredictBookNumber 03) < 0.2
Math.abs(denormPredictBookNumber 04) > 0.85

0 O 0

430

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Math.abs(denormPredictBookNumber 05) < 0.2)
{
System.out.println ("Record 4 belongs to book 4");
System.out.println (" ");
}

else
{
System.out.println ("Wrong results for record 4");
System.out.println (" ");
}
if(Math.abs(denormPredictBookNumber 05) > 0.85)
if(Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) > 0.85)
{
System.out.println ("Record 5 belongs to book 5");
System.out.println (" ");
}

else

{

System.out.println ("Wrong results for record 5");
System.out.println (" ");

}
} // End for pair loop

returnCode = 0;
return returnCode;

} // End of the method

Listing 10-5 shows the code fragment of the testing method.

Here, you load the test data set and the previously saved trained network in memory.
Next, you loop over the pair data set and retrieve for each record three input book
numbers and five target book numbers. You denormalize the obtained values and then
check whether the record belongs to one of the five books.

431

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Listing 10-5. Code Fragment of the Testing Method

// Load the test dataset into memory
MLDataSet testingSet =

loadCSV2Memory (testFileName, numberOfInputNeurons,numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject(new

File(networkFileName));

int i

for (MLDataPair pair: testingSet)

432

i++;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputWordNumberFromRecord = inputData.getData(0);
normTargetBookNumberFromRecord = actualData.getData(0);
normPredictXPointValueFromRecord = predictData.getData(0);

denormInputWordNumber 01 = ((minWordNumberDl -maxWordNumbexrDh)*
normInputWordNumber 01 - Nh*minWordNumberDl +
maxWoxrdNumbexDh *N1)/(N1 - Nh);

denormInputWordNumber 02 = ((minWordNumberDl -
maxWordNumbexDh)*normInputWordNumber 02 - Nh*minWordNumberDl +
maxWordNumbexDh *N1)/(N1 - Nh);

denormInputWordNumber 03 = ((minWordNumberDl -
maxWordNumberDh)*normInputWordNumber 03 - Nh*minWordNumberDl +
maxWordNumbexrDh *N1)/(N1 - Nh);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

denormTargetBookNumber 01 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 02 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 03 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 03 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 04 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormTargetBookNumber 05 = ((minTargetValueDl -
maxTargetValueDh)*normTargetBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 01 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 01 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 02 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 02 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 03 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 03 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 04 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 04 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictBookNumber 05 =((minTargetValueDl -
maxTargetValueDh)*normPredictBookNumber 05 -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

433

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

434

System.out.println ("RecordNumber = " + i);

System.out.println ("denormTargetBookNumber 01 = " +

denormTargetBookNumber_01 + "denormPredictBookNumber_ 01

denormPredictBookNumber 01);

System.out.println ("denormTargetBookNumber 02 = " +

denormTargetBookNumber 02 + "denormPredictBookNumber 02

denormPredictBookNumber 02);

System.out.println ("denormTargetBookNumber 03 = " +

denormTargetBookNumber 03 + "denormPredictBookNumber 03

denormPredictBookNumber 03);

System.out.println ("denormTargetBookNumber 04 = " +

denormTargetBookNumber 04 + "denormPredictBookNumber 04

denormPredictBookNumber 04);

System.out.println ("denormTargetBookNumber 05 = " +

denormTargetBookNumber 05 + "denormPredictBookNumber 05

denormPredictBookNumber 05);
//System.out.println (" ");

if(Math.abs(denormPredictBookNumber 01) > 0.85 &

Math.abs(denormPredictBookNumber 02) < 0.2 &

Math.abs(denormPredictBookNumber 03) < 0.2 &

Math.abs(denormPredictBookNumber 04) < 0.2 &

Math.abs(denormPredictBookNumber 05) < 0.2

|

Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs (denormPredictBookNumber 02) > 0.85 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) < 0.2

Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) > 0.85 &
Math.abs(denormPredictBookNumber 03) < 0.2 &

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) < 0.2

Math.abs(denormPredictBookNumber 01) < 0.2 &

Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) > 0.85 &
Math.abs(denoxrmPredictBookNumber 04) < 0.2 &
Math.abs (denoxrmPredictBookNumber 05) < 0.2
I
Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denormPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) > 0.85 &
Math.abs(denormPredictBookNumber 05) < 0.2
|
Math.abs(denormPredictBookNumber 01) < 0.2 &
Math.abs(denormPredictBookNumber 02) < 0.2 &
Math.abs(denoxrmPredictBookNumber 03) < 0.2 &
Math.abs(denormPredictBookNumber 04) < 0.2 &
Math.abs(denormPredictBookNumber 05) > 0.85)
{
System.out.println ("Record belong to some book");
System.out.println (" ");
}
else
{

System.out.println ("Unknown book");
System.out.println (" ");

}
} // End for pair loop

} // End of the method

435

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Training Results

Listing 10-6 shows the training/validation results.

Listing 10-6. Training/Validation Results

RecordNumber = 1
denormTargetBookNumber 01
denormTargetBookNumber 02
3.6221384780432686E-9
denormTargetBookNumber 03
denormTargetBookNumber 04
1.3178162894256218E-8
denormTargetBookNumber 05
2.220446049250313E-16

1.0
-0.0

-0.0
-0.0

-0.0

Record 1 belongs to book 1

RecordNumber = 2
denormTargetBookNumber 01
denormTargetBookNumber 02
3.6687665128098956E-9
denormTargetBookNumber 03
denormTargetBookNumber 04
1.0430401597982808E-8
denormTargetBookNumber 05
2.220446049250313E-16

1.0
-0.0

'0.0
-0.0

-0.0

Record 1 belongs to book 1

RecordNumber = 3
denormTargetBookNumber 01
denormTargetBookNumber 02
4.35402175424926E-9
denormTargetBookNumber 03
denormTargetBookNumber 04
9.684705759571699E-9
denormTargetBookNumber_ 05
2.220446049250313E-16

436

1.0
'0.0

-0.0
_0.0

-0.0

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

1.0

-0.0

1.0

'0.0

1.0

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Record 1 belongs to book 1

RecordNumber = 4
denormTargetBookNumber_01
denormTargetBookNumber 02
6.477930192261283E-9
denormTargetBookNumber 03
denormTargetBookNumber 04
4.863816960298806E-9
denormTargetBookNumber 05
2.220446049250313E-16

1.0
-0.0

-0.0
-0.0

-0.0

Record 1 belongs to book 1

RecordNumber = 5
denormTargetBookNumber 01
denormTargetBookNumber 02
1.7098276960947345E-8
denormTargetBookNumber 03
denormTargetBookNumber 04
4.196660130517671E-9
denormTargetBookNumber 05
2.220446049250313E-16

1.0
-0.0

-0.0
-000

-0.0

Record 1 belongs to book 1

RecordNumber = 6
denormTargetBookNumber 01
denormTargetBookNumber 02
9.261896322110275E-8
denormTargetBookNumber 03
denormTargetBookNumber 04
2.6307949707593536E-9
denormTargetBookNumber 05
2.7755575615628914E-16

1.0
-0.0

=00
-0.0

-0.0

Record 1 belongs to book 1

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumbexr 02

denormPredictBookNumber 03
denormPredictBookNumbexr 04

denormPredictBookNumber 05

denormPredictBookNumber_01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

1.0

-0.0

1.0

-0.0

1.0

-0.0

437

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 7
denormTargetBookNumber 01
5.686340287525127E-12
denormTargetBookNumber 02
0.9999999586267019
denormTargetBookNumber 03
denormTargetBookNumber 04
1.1329661653292078E-9
denormTargetBookNumber 05
9.43689570931383E-16

]

-0.0

1.0

-0.0
-0.0

-0.0

Record 2 belongs to book 2

RecordNumber = 8
denormTargetBookNumber 01
denormTargetBookNumber 02
0.9999999999998506
denormTargetBookNumber 03
denormTargetBookNumber 04
1.091398971198032E-9
denormTargetBookNumber 05
2.6645352591003757E-15

-0.0
1.0

-000
-0.0

_000

Record 2 belongs to book 2

RecordNumber = 9
denormTargetBookNumber 01
denormTargetBookNumber 02
0.9999999999999962
denormTargetBookNumber 03
denormTargetBookNumber 04
1.0686406759496947E-9
denormTargetBookNumber 05
3.7192471324942744E-15

438

-0.0
1.0

-0.0
"0.0

-0.0

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

-0.0

-0.0

_000

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Record 2 belongs to book 2

RecordNumber = 10
denormTargetBookNumber_01
denormTargetBookNumber 02
0.9999999999999798
denormTargetBookNumber 03
2.2352120154778277E-12
denormTargetBookNumber 04
7.627692921730045E-10
denormTargetBookNumber 05
1.9817480989559044E-14

-0.0
1.0

-0.0

-0.0

=0.0

Record 2 belongs to book 2

RecordNumber = 11
denormTargetBookNumber 01
denormTargetBookNumber 02
0.9999999999999603
denormTargetBookNumber 03
1.2451872866137137E-11
denormTargetBookNumber 04
7.404629132068408E-10
denormTargetBookNumber 05
2.298161660974074E-14

-0.0
1.0

-000

-0.0

-000

Record 2 belongs to book 2

RecordNumber = 12
denormTargetBookNumber 01
denormTargetBookNumber 02
0.9999999999856213
denormTargetBookNumber 03
7.48775297876314E-8
denormTargetBookNumber 04
6.947271091739537E-10
denormTargetBookNumber 05
4.801714581503802E-14

-0.0
1:0

-0.0

-0.0

-O-O

Record 2 belongs to book 2

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

-0.0

-0.0

-0.0

439

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 13
denormTargetBookNumber 01
denormTargetBookNumber 02
7.471272545078733E-9
denormTargetBookNumber 03
0.9999999419988991
denormTargetBookNumber 04
2.5249974888730264E-9
denormTargetBookNumber 05
2.027711332175386E-12

-0.0
-0.0

1.0

-0.0

-0.0

Record 3 belongs to book 3

RecordNumber = 14
denormTargetBookNumber 01
denormTargetBookNumber 02
2.295386103412511E-13
denormTargetBookNumber 03
0.9999999999379154
denormTargetBookNumber 04
4.873732140087128E-9
denormTargetBookNumber 05
4.987454893523591E-12
Record 3 belongs to book 3

RecordNumber = 15
denormTargetBookNumber 01
denormTargetBookNumber 02
2.692845946228317E-13
denormTargetBookNumber 03
0.9999999998630087
denormTargetBookNumber 04
4.701179112664988E-9
denormTargetBookNumber 05

4.707678691318051E-12

-0.0
-0.0

1.0

-0.0

‘0.0

-0.0
-0.0

1.0

-0.0

-000

Record 3 belongs to book 3

440

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02

denormPredictBookNumber 03
denormPredictBookNumbexr 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber_02

denormPredictBookNumber 03
denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

I

-0.0

-0.0

-0.0

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 16

denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0
denormTargetBookNumber 03 = 1.0 denormPredictBookNumber 03 =
0.9999999999999996
denormTargetBookNumber 04 = -0.0 denormPredictBookNumber 04 =
2.0469307360215794E-8
denormTargetBookNumber 05 = -0.0 denormPredictBookNumber 05 =
2.843247859374287E-11

Record 3 belongs to book 3
RecordNumber = 17
denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0
denormTargetBookNumber 03 = 1.0 denormPredictBookNumber 03 =
0.9999999999999987
denormTargetBookNumber 04 = -0.0 denormPredictBookNumber 04 =
1.977055869017974E-8
denormTargetBookNumber 05 = -0.0 denormPredictBookNumber 05 =
2.68162714256448E-11

Record 3 belongs to book 3
RecordNumber = 18
denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0

denormTargetBookNumber 03
0.9999999885142061
denormTargetBookNumber 04
2.6820915488556807E-8
denormTargetBookNumber 05
7.056188966458876E-12
Record 3 belongs to book 3

1.0 denormPredictBookNumber 03

-0.0 denormPredictBookNumber 04

-0.0 denormPredictBookNumber 05

441

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 19
denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
2.983344798979104E-8
denormTargetBookNumber 04 = 1.0
0.9999999789933758
denormTargetBookNumber 05 = -0.0

1.7987472622493783E-10

Record 4 belongs to book 4

RecordNumber = 20

denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
1.0003242317813132E-7
denormTargetBookNumber 04 = 1.0
0.9999999812213116
denormTargetBookNumber 05 = -0.0

2.2566659652056842E-10

RecordNumber = 21
denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
1.4262971415046621E-8
denormTargetBookNumber 04 = 1.0
0.9999999812440078
denormTargetBookNumber 05 = -0.0

Record 4 belongs to book 4

2.079504346497174E-10

442

Record 4 belongs to book 4

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

-0.0

‘0.0

-0.0
_000

RecordNumber = 22
denormTargetBookNumber 01
denormTargetBookNumber 02
denormTargetBookNumber 03
5.790115659154438E-8
denormTargetBookNumber 04
0.9999999845075942
denormTargetBookNumber 05
2.9504404475133583E-10

]

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

-0.0

-0.0

-0.0

1.0

-0.0

Record 4 belongs to book 4

RecordNumber = 23
denormTargetBookNumber 01
denormTargetBookNumber 02
denormTargetBookNumber 03
6.890162551620449E-9
denormTargetBookNumber 04
0.999999984526581
denormTargetBookNumber 05
2.6966767707747863E-10

-0.0

-0.0

-0.0

1.0

-0.0

Record 4 belongs to book 4

RecordNumber = 24
denormTargetBookNumber 01
denormTargetBookNumber 02
denormTargetBookNumber 03
9.975842318876715E-9
denormTargetBookNumber 04
0.9999999856956441
denormTargetBookNumber 05
3.077177401777931E-10

-0.0
_000
-0.0

1.0

—0.0

Record 4 belongs to book 4

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumbexr 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

-0.0
=0.0

'0.0
-0.0

-0.0
_000

443

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 25
denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
3.569367024169878E-14
denormTargetBookNumber 04 = -0.0
1.8838704707313525E-8
denormTargetBookNumber 05 = 1.0

0.9999999996959972

Record 5 belongs to book 5

RecordNumber = 26

denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
4.929390229335695E-14
denormTargetBookNumber 04 = -0.0
1.943621164013365E-8
denormTargetBookNumber 05 = 1.0

0.9999999997119369

RecordNumber = 27
denormTargetBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0
1.532107773982716E-14
denormTargetBookNumber 04 = -0.0
1.926626319592728E-8
denormTargetBookNumber 05 = 1.0

Record 5 belongs to book 5

0.9999999996935514

444

Record 5 belongs to book 5

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

denormPredictBookNumber 01
denormPredictBookNumber 02
denormPredictBookNumber 03

denormPredictBookNumber 04

denormPredictBookNumber 05

Dy Profl Engr Mr Santosh Kumar

-0.0

‘0.0

-0.0
_000

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

RecordNumber = 28

denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0 denormPredictBookNumber 03 =
3.2862601528904634E-14
denormTargetBookNumber 04 = -0.0 denormPredictBookNumber 04 =
2.034116280968945E-8
denormTargetBookNumber 05 = 1.0 denormPredictBookNumber 05 =
0.9999999997226772

Record 5 belongs to book 5
RecordNumber = 29
denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0
denormTargetBookNumber 03 = -0.0 denormPredictBookNumber 03 =
1.27675647831893E-14
denormTargetBookNumber 04 = -0.0 denormPredictBookNumber 04 =
2.014738198496957E-8
denormTargetBookNumber 05 = 1.0 denormPredictBookNumber 05 =
0.9999999997076233

Record 5 belongs to book 5
RecordNumber = 30
denormTargetBookNumber 01 = -0.0 denormPredictBookNumber 01 = -0.0
denormTargetBookNumber 02 = -0.0 denormPredictBookNumber 02 = -0.0

denormTargetBookNumber 03
2.0039525594484076E-14
denormTargetBookNumber 04
2.0630209485172912E-8
denormTargetBookNumber 05
0.9999999997212032

Record 5 belongs to book 5

-0.0 denormPredictBookNumber 03 =

-0.0 denormPredictBookNumber 04 =

1.0 denormPredictBookNumber 05 =

As shown in the log, the program correctly identified the book numbers to which all
the records belong .

445

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10 USING NEURAL NETWORKS TO CLASSIFY OBJECTS

Testing Results

Listing 10-7 shows the testing results.

Listing 10-7. Testing Results

RecordNumber = 1
Unknown book

RecordNumber = 2
Unknown book

RecordNumber = 3
Unknown book

RecordNumber = 4
Unknown book

RecordNumber = 5
Unknown book

RecordNumber = 6
Unknown book

RecordNumber = 7
Unknown book

RecordNumber = 8
Unknown book

RecordNumbexr = 9
Unknown book

RecordNumber = 10
Unknown book
RecordNumber = 11
Unknown book

RecordNumber = 12
Unknown book

446

Dy Profl Engr Mr Santosh Kumar

CHAPTER 10

RecordNumber = 13
Unknown book

RecordNumber = 14
Unknown book

RecordNumber = 15
Unknown book

USING NEURAL NETWORKS TO CLASSIFY OBJECTS

The testing process correctly classified the objects by determining that all the
processed records don’t belong to any of the five books.

Summary

The chapter explained how to use neural networks to classify objects. Specifically, the

example in this chapter showed how a neural network was able to determine to which

book each testing record belongs. In the next chapter, you will learn the importance of

selecting the correct processing model.

447

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

The Importance of
Selecting the Correct
Model

The example discussed in this chapter will end up showing a negative result. However,
you can learn a lot from mistakes like this.

Example 7: Predicting Next Month’s Stock
Market Price

In this example, you will try to predict next month’s price of the SPY exchange-traded
fund (ETF); this is the ETF that mimics the S&P 500 stock market index. Someone’s
rational for developing such a project could be something like this:

“We know that market prices are random, jumping daily up and down and
reacting to different news. However, we are using the monthly prices, which
tend to be more stable. In addition, the market often experiences conditions
that are similar to past situations, so people (in general) should react
approximately the same with the same conditions. Therefore, by knowing
how the market reacted in the past, we should be able to closely predict the
market behavior for the next month.”

In this example, you will use the ten-year historic monthly prices for the SPY ETF and
will attempt to predict next month’s price. Of course, using the historical SPY data from
a longer duration would positively contribute to the accuracy of the prediction; however,
this is an example, so let’s keep it reasonable small. The input data set contains data for

449
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_11

O Prof Enr:ir M Sanfosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

ten years (120 months), from January 2000 until January 2009, and you want to predict
the SPY price at the end of February 2009. Table 11-1 shows the historical monthly SPY

prices for that period.

Table 11-1. Historical Monthly SPY ETF Prices

Date Price Date Price
200001 1394.46 200501 1181.27
200002 1366.42 200502 1203.6
200003 1498.58 200503 1180.59
200004 1452.43 200504 1156.85
200005 1420.6 200505 1191.5
200006 1454.6 200506 1191.33
200007 1430.83 200507 1234.18
200008 1517.68 200508 1220.33
200009 1436.51 200509 1228.81
200010 1429.4 200510 1207.01
200011 1314.95 200511 1249.48
200012 1320.28 200512 1248.29
200101 1366.01 200601 1280.08
200102 1239.94 200602 1280.66
200103 1160.33 200603 1294.87
200104 1249.46 200604 1310.61
200105 1255.82 200605 1270.09
200106 1224.38 200606 1270.2
200107 1211.23 200607 1276.66
200108 1133.58 200608 1303.82
200109 1040.94 200609 1335.85
200110 1059.78 200610 1377.94

(continued)
450

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-1. (continued)

Date Price Date Price
200111 1139.45 200611 1400.63
200112 1148.08 200612 1418.3
200201 1130.2 200701 1438.24
200202 1106.73 200702 1406.82
200203 1147.39 200703 1420.86
200204 1076.92 200704 1482.37
200205 1067.14 200705 1530.62
200206 989.82 200706 1503.35
200207 911.62 200707 1455.27
200208 916.07 200708 1473.99
200209 815.28 200709 1526.75
200210 885.76 200710 1549.38
200211 936.31 200711 1481.14
200212 879.82 200712 1468.36
200301 855.7 200801 1378.55
200302 841.15 200802 1330.63
200303 848.18 200803 1322.7
200304 916.92 200804 1385.59
200305 963.59 200805 1400.38
200306 974.5 200806 1280
200307 990.31 200807 1267.38
200308 1008.01 200808 1282.83
200309 995.97 200809 1166.36
200310 1050.71 200810 968.75
200311 1058.2 200811 896.24
(continued)
451

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

Table 11-1. (continued)

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Date Price Date Price
200312 1111.92 200812 903.25
200401 1131.13 200901 825.88
200402 1144.94 200902 735.09
200403 1126.21 200903 797.87
200404 1107.3 200904 872.81
200405 1120.68 200905 919.14
200406 1140.84 200906 919.32
200407 1101.72 200907 987.48
200408 1104.24 200908 1020.62
200409 1114.58 200909 1057.08
200410 1130.2 200910 1036.19
200411 1173.82 200911 1095.63
200412 1211.92 200912 1115.1

Figure 11-1 shows the chart of the historical monthly SPY prices.

452

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

X SPDR S&P 500, 1M, BATS ~ 087.44 H93.70 L86.72 C92.53 selL Uy +t
Vol (20) - [S[IEIET 51978 6.158 290.84 014 290.98 ®Z

11T 1111 118111
2000 2001 2002 2003 2004 2005

Figure 11-1. SPY monthly chart for the interval [2000/01 - 2009/01]

Notice that the input data set includes the market prices during two market crashes,
so the network should be able to learn about the market’s behavior during those crashes.
You already learned from the previous examples that to make predictions outside the
training range you need to transform the original data to a format that will allow you to
do this. So, as part of this transformation, you create the price difference data set with
records thatinclude these two fields:

— Field I: Percent difference between the current and previous month prices
— Field 2: Percent difference between the next and current month prices

Table 11-2 shows the fragment of the transformed price difference data set.

453

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-2. Fragment of the Price Difference Data Set

Field 1 Field 2

priceDiffPerc targetPriceDiffPerc Date InputPrice
-5.090352221 -2.010814222 200001 1394.46
-2.010814222 9.671989579 200002 1366.42
9.671989579 -3.079582004 200003 1498.58
-3.079582004 -2.191499762 200004 1452.43
-2.191499762 2.39335492 200005

2.39335492 -1.63412622 200006

-1.63412622 6.069903483 200007 1430.83
6.069903483 -5.348294766 200008 1517.68
-5.348294766 -0.494949565 200009 1436.51
-0.494949565 -8.006856024 200010

-8.006856024 0.405338606 200011 1314.95
0.405338606 3.463659224 200012 1320.28
3.463659224 -9.229068601 200101 1366.01
-9.229068601 -6.420471958 200102 1239.94
-6.420471958 7.681435454 200103 1160.33
7.681435454 0.509019897 200104 1249.46
0.509019897 -2.503543501 200105 1255.82
-2.503543501 -1.07401297 200106 1224.38
-1.07401297 -6.410838569 200107 1211.23
-6.410838569 -8.172338962 200108 1133.58
-8.172338962 1.809902588 200109 1040.94
1.809902588 7.517597992 200110 1059.78
7.517597992 0.757382948 200111 1139.45
0.757382948 -1.557382761 200112 1148.08
-1.557382761 -2.076623606 200201

454

Dy Profl Engr Mr Santosh Kumar

(continued)

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL
Table 11-2. (continued)
Field 1 Field 2
priceDiffPerc targetPriceDiffPerc Date InputPrice
-2.076623606 3.673886133 200202 1106.73
3.673886133 -6.141765224 200203 1147.39
-6.141765224 -0.908145452 200204 1076.92
-0.908145452 -7.245534794 200205 1067.14
-7.245534794 -7.90042634 200206 989.82
-7.90042634 0.488141989 200207 911.62
0.488141989 -11.00243431 200208 916.07
-11.00243431 8.64488274 200209 815.28
8.64488274 5.706963512 200210 885.76
5.706963512 -6.033258216 200211 936.31
-6.033258216 -2.741469846 200212 879.82
-2.741469846 -1.700362276 200301 855.7
-1.700362276 0.835760566 200302 841.15
0.835760566 8.104411799 200303 848.18
8.104411799 5.089866073 200304 916.92
5.089866073 1.132224286 200305 963.59

Columns 3 and 4 were included to facilitate the calculation of columns 1 and 2,

but they are ignored during processing. As always, you normalize this data set on the
interval [-1, 1]. Table 11-3 shows the normalized data set.

Dy Profl Engr Mr Santosh Kumar

455

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-3. Fragment of the Normalized Price Difference Data Set

priceDiffPerc targetPriceDiffPerc Date inputPrice
-0.006023481 0.199279052 200001 1394.46
0.199279052 0.978132639 200002 1366.42
0.978132639 0.128027866 200003 1498.58
0.128027866 0.187233349 200004 1452.43
0.187233349 0.492890328 200005 1420.6
0.492890328 0.224391585 200006 1454.6
0.224391585 0.737993566 200007 1430.83
0.737993566 -0.023219651 200008 1517.68
-0.023219651 0.300336696 200009 1436.51
0.300336696 -0.200457068 200010 1429.4
-0.200457068 0.360355907 200011 1314.95
0.360355907 0.564243948 200012 1320.28
0.564243948 -0.281937907 200101 1366.01
-0.281937907 -0.094698131 200102 1239.94
-0.094698131 0.84542903 200103 1160.33
0.84542903 0.367267993 200104 1249.46
0.367267993 0.166430433 200105 1255.82
0.166430433 0.261732469 200106 1224.38
0.261732469 -0.094055905 200107 1211.23
-0.094055905 -0.211489264 200108 1133.58
-0.211489264 0.453993506 200109 1040.94
0.453993506 0.834506533 200110 1059.78
0.834506533 0.38382553 200111 1139.45
0.38382553 0.229507816 200112 1148.08
0.229507816 0.19489176 200201 1130.2

(continued)
456

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

Table 11-3. (continued)

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

priceDiffPerc targetPriceDiffPerc Date inputPrice
0.19489176 0.578259076 200202 1106.73
0.578259076 -0.076117682 200203 1147.39
-0.076117682 0.272790303 200204 1076.92
0.272790303 -0.14970232 200205 1067.14
-0.14970232 -0.193361756 200206 989.82
-0.193361756 0.365876133 200207 911.62
0.365876133 -0.400162287 200208 916.07
-0.400162287 0.909658849 200209 815.28
0.909658849 0.713797567 200210 885.76
0.713797567 -0.068883881 200211 936.31
-0.068883881 0.150568677 200212 879.82

Again, ignore columns 3 and 4. They are used here for the convention of preparing
this data set, but they are not processed.

Including Function Topology in the Data Set

Next, you will include information about the function topology in the data set because it
allows you to match not only a single Field 1 value but the set of 12 Field 1 values (which
means matching one year worth of data). To do this, you build the training file with the
sliding window records. Each sliding window record consists of 12 inputPriceDiffPerc
fields from 12 original records plus the targetPriceDiffPerc field from the next original
record (the record that follows the original record’s 12). Table 11-4 shows the fragment of
the resulting data set.

457

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-4. Fragment of the Training Data Set That Consists of Sliding
Window Records

Sliding Windows

0.591 0.55 0.165 0.459 0.206 0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.327
0.55 0.165 0.459 0.206 0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.503
0.165 0.459 0.206 0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.327 0.336
0.459 0.206 0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.327 0.503 0.407
0.206 0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.414
0.199 0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.407 0.127
0.533 0.332 0.573 0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.334
0.332 0573 0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.367
0.573 0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.475
0.259 0.38 0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.497
038 0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.543
0.215 0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.443
0.568 0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.543 0.417
0.327 0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.543 0.443 0.427
0.503 0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.543 0.443 0.417 0.188
0.336 0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.543 0.443 0.417 0.427 0.400
0.407 0.414 0.127 0.334 0.367 0.475 0.497 0.543 0.443 0.417 0.427 0.188 0.622
0.414 0127 0.334 0.367 0.475 0.497 0.543 0.443 0.417 0.427 0.188 0.400 0.55
0.127 0.334 0.367 0.475 0.497 0.543 0.443 0.417 0427 0188 04 0622 0.215
0.334 0.367 0.475 0.497 0.543 0.443 0.417 0.427 0.188 0.4 0.622 055 0.12
0.367 0.475 0.497 0.543 0.443 0.417 0.427 0.188 0.400 0.622 0.55 0.215 0.419
0.475 0.497 0.543 0.443 0.417 0.427 0.188 0.400 0.622 0.55 0.215 0.12 0.572
0.497 0.543 0.443 0.417 0.427 0.188 0.400 0.622 0.55 0.215 0.12 0.419 0.432
0.543 0.443 0.417 0.427 0.188 04 0.622 0.55 0.215 0.12 0.419 0.572 0.04

(continued)

458

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-4. (continued)

Sliding Windows

0.443 0.417 0.427 0.188 0.400 0.622 0.55 0.215 0.12 0.419 0.572 0.432 0.276
0.417 0.427 0.188 0.400 0.622 0.550 0.215 0.12 0.419 0.572 0.432 0.04 -0.074
0.427 0.188 0.400 0.622 0.55 0.215 0.12 0.419 0.572 0.432 0.040 0.276 0.102
0.188 0.400 0.622 0.55 0.215 0.12 0.419 0.572 0.432 0.04 0.276 -0.074 0.294
0.400 0.622 0.55 0.215 0.12 0.419 0.572 0.432 0.04 0.276 -0.07 0.102 0.650

Because the function is noncontinuous, you break this data set into micro-batches
(single-month records).

Building Micro-Batch Files

Listing 11-1 shows the program code that builds the micro-batch files from the
normalized sliding window data set.

Listing 11-1. Program Code That Builds the Micro-Batch File

// Build micro-batch files from the normalized sliding windows file.

// Each micro-batch dataset should consists of 12 inputPriceDiffPerc fields

// taken from 12 records in the original file plus a single
targetPriceDiffPerc

// value taken from the next month record. Each micro-batch includes the label

// record.

package sample7_build microbatches;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;

459

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.*;

import java.util.Properties;

public class Sample7 Build MicroBatches
{

// Config for Training

static int numberOfRowsInInputFile = 121;

static int numberOfRowsInBatch = 13;

static String strInputFileName =
"C:/My_Neural Network_Book/Book Examples/Sample7 SlidWindows_
Train.csv";

static String strOutputFileNameBase =
"C:/My_Neural Network Book/Temp Files/Sample7 Microbatches
Train Batch ";

// Config for Testing

//static int numberOfRowsInInputFile = 122;

//static int numberOfRowsInBatch = 13;

//static String strInputFileName =

// "C:/My_Neural_Network_Book/Book Examples/Sample7_SlidWindows_
Test.csv";

//static String strOutputFileNameBase =

// "C:/My Neural Network Book/Temp Files/Sample7 Microbatches
Test Batch ";

static InputStream input = null;

public static void main(String[] args)

460

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

BufferedReader br;
PrintWriter out;
String cvsSplitBy = ",";

nn,

String line = "";

String linelabel = "";

String[] strOutputFileNames = new String[1070];
String iString;

String strOutputFileName;

String[] strArrLine = new String[1086];

int i;

int 3

// Read the original data and break it into batches

try

{
// Delete all output file if they exist

for (i = 0; i < numberOfRowsInInputFile; i++)

{
iString = Integer.toString(i);

if(i < 10)
strOutputFileName = strOutputFileNameBase + "00" +
iString + ".csv";
else
if (i >= 10 && i < 100)
strOutputFileName = strOutputFileNameBase + "0" +
iString + ".csv";
else
strOutputFileName = strOutputFileNameBase + iString +
T Csy";

Files.deleteIfExists(Paths.get(strOutputFileName));
}

461

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

i=-1; // Input line number
r = -2; // index to write in the memory
br = new BufferedReader(new FileReader(strInputFileName));

// Load all input recodes into memory
while ((line = br.readlLine()) != null)
{
i+4;
T++;
if (1. ==.0)

{
// Save the label line

linelabel = line;

else

{

// Save the data in memory
strArrLine[r] = line;

}
} // End of WHILE

br.close();

// Build batches
br = new BufferedReader(new FileReader(strInputFileName));

for (i = 0; i < numberOfRowsInInputFile - 1; i++)

{

iString = Integer.toString(i);

// Construct the mini-batch

if(i < 10)
strOutputFileName = strOutputFileNameBase + "00" +
iString + ".csv";

else

462

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

if (i >= 10 && i < 100)
strOutputFileName = strOutputFileNameBase + "0" +
iString + ".csv";

else
strOutputFileName = strOutputFileNameBase + iString +
T CSV 5

out = new PrintWriter(new BufferedWriter(new FileWriter
(strOutputFileName)));

// write the header line as it is
out.println(lineLabel);
out.println(strArrLine[i]);

out.close();
} // End of FOR i loop

} // End of TRY
catch (IOException io)

{

io.printStackTrace();

}
} // End of the Main method

} // End of the class

This program breaks the sliding window data set into micro-batch files. Figure 11-2
shows a fragment of the list of micro-batch files.

463

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

(%)) sample 7_Microbatches_Train_Batch_000.csv
i3] Sample7_Microbatches_Train_Batch_001.csv
ixg)sample7_Microbatches_Train_Batch_002.csv
ix{)Sample7_Microbatches_Train_Batch_003.csv
ix5)Sample7_Microbatches_Train_Batch_004.csv
i3] Sample7_Microbatches_Train_Batch_005.csv
@Sanple?_ﬁcobatd\es_Trah_Batﬁ_OOG.csv
X)) Sample7_Microbatches_Train_Batch_007.csv
i2)) sample7_Microbatches_Train_Batch_008.csv
ix5) Sample 7_Microbatches_Train_Batch_009.csv
i35 Sample7_Microbatches_Train_Batch_010.csv
@Sample?_Micobatdwes_Trah_Bat&__Oll.sv
x3)Sample7_Microbatches_Train_Batch_012.csv
24l Sample7_Microbatches_Train_Batch_013.csv
*3lSample7_Microbatches_Train_Batch_014.csv
ix)) Sample7_Microbatches_Train_Batch_015.csv
ix5) Sample7_Microbatches_Train_Batch_016.csv
ixg)Sample7_Microbatches_Train_Batch_017.csv
ixj)Sample7_Microbatches_Train_Batch_018.csv
i2}) sample7_Microbatches_Train_Batch_019.csv
i3] Sample7_Microbatches_Train_Batch_020.csv
i3] Sample7_Microbatches_Train_Batch_021.csv
i) sample 7_Microbatches_Train_Batch_022.csv
1%} Sample 7_Microbatches_Train_Batch_023.csv
ixj) sample7_Microbatches_Train_Batch_024.csv
i35 Sample7_Microbatches_Train_Batch_025.csv
i) sample7_Microbatches_Train_Batch_026.csv
ix{) sample7_Microbatches_Train_Batch_027.csv
i) Sample7_Microbatches_Train_Batch_028.csv
ixj] sample7_Microbatches_Train_Batch_029.csv
ix5)Sample7_Microbatches_Train_Batch_030.csv
i35 Sample7_Microbatches_Train_Batch_031.csv

Figure 11-2. Fragment of the list of micro-batch files

Listing 11-2 shows how each micro-batch data set looks when it is opened.

464

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL
Listing 11-2. Sample of the Micro-Batch File

Sliding window micro-batch record
-0.006023481 0.199279052 0.978132639 0.128027866 0.187233349 0.492890328
0.224391585 0.737993566 -0.023219651 0.300336696 -0.200457068 0.360355907
-0.281937907

Micro-batch files are the training files to be processed by the network.

Network Architecture

Figure 11-3 shows the network architecture for this example. The network has 12
input neurons, seven hidden layers (each with 25 neurons), and an output layer with
a single neuron.

Input Hidden Qutput
Layer Layers Layer

tal
v-

“0+009090:0:0:0:0°0>0>0
900000000000

“00:0:00909:9:0:0:0°0°0°0-0-0-0-
0:0:0:090:0:0:0:0:0'0°9°9:

Figure 11-3. Network architecture

465

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Now you are ready to build the network processing program.

Program Code

Listing 11-3 shows the program code.

Listing 11-3. Code of the Neural Network Processing Program

// Approximate the SPY prices function using the micro-batch method.

// Each micro-batch file includes the label record and the data record.
// The data record contains 12 inputPriceDiffPerc fields plus one

// targetPriceDiffPerc field.

//

// The number of input Layer neurons is 12

// The number of output Layer neurons is 1

// =====s========z====s=zsssssoosssssssssssssossossssossssooosssssssossss

package sample7;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.*;

import java.util.Properties;
import java.time.YearMonth;
import java.awt.Color;

import java.awt.Font;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.text.DateFormat;

466

Dy Profl Engr Mr Santosh Kumar

import java.text.ParseEx
import java.text.SimpleDateFormat;
import java.time.localDa
import java.time.Month;

import java.time.Zoneld;
import java.util.Arrayli
import java.util.Calenda
import java.util.Date;

import java.util.list;

import java.util.locale;
import java.util.Propert

import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

encog.Encog;

encog.engine.
encog.engine.
encog.ml.data
encog.ml.data
encog.ml.data
encog.ml.data
encog.ml.data
encog.ml.data
encog.neural.
encog.neural.
encog.neural.

ResilientPropagation;

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

ception;

te;

st}
I

ies;

network.activation.ActivationTANH;
network.activation.ActivationRelU;
.MLData;

.MLDataPair;

.MLDataSet;
.buffer.MemoryDataloader;
.buffer.codec.CSVDataCODEC;
.buffer.codec.DataSetCODEC;
networks.BasicNetwork;
networks.layers.Basiclayer;
networks.training.propagation.resilient.

import org.encog.persist.EncogDirectoryPersistence;

import

import
import
import
import
import
import
import
import
import

org.

org.
org.
org.
org.
org.
org.
org.
org.
org.

encog.util.cs

knowm.xchart.
knowm.xchart
knowm.xchart
knowm.xchart
knowm.xchart.
knowm.xchart.
knowm.xchart.
knowm.xchart.
knowm.xchart.

v.CSVFormat;

SwingWrapper;

.XYChart;
.XYChartBuilder;
.XYSeries;

demo.charts.ExampleChart;
style.Styler.LegendPosition;
style.colors.ChartColor;
style.colors.XChartSeriesColors;
style.lines.Serieslines;

467

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

public class Sample7 implements ExampleChart<XYChart>
{

// Normalization parameters

// Normalizing interval
static double Nh = 1;
static double N1 = -1;

// inputPriceDiffPerc

static double inputPriceDiffPercDh = 10.00;
static double inputPriceDiffPercDl = -20.00;
// targetPriceDiffPerc

static double targetPriceDiffPercDh = 10.00;
static double targetPriceDiffPercDl = -20.00;

n n

static String cvsSplitBy = ",";

static Properties prop = null;

static Date workDate = null;

static int paramErrorCode = 0;

static int paramBatchNumber = 0;

static int paramDayNumber = 0;

static String strWorkingMode;

static String strNumberOfBatchesToProcess;
static String strNumberOfRowsInInputFile;
static String strNumberOfRowsInBatches;
static String strIputNeuronNumber;

static String strOutputNeuronNumber;
static String strNumberOfRecordsInTestFile;
static String strInputFileNameBase;

static String strTestFileNameBase;

static String strSaveNetworkFileNameBase;

468

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

static String strTrainFileName;
static String strValidateFileName;
static String strChartFileName;
static String strDatesTrainFileName;
static String strPricesFileName;
static int intWorkingMode;

static int intNumberOfBatchesToProcess;
static int intNumberOfRowsInBatches;
static int intInputNeuronNumber;
static int intOutputNeuronNumber;
static String strOutputFileName;
static String strSaveNetworkFileName;
static String strNumberOfMonths;
static String strYearMonth;

static XYChart Chart;

static String iString;

static double inputPriceFromFile;

static List<Double> xData = new ArraylList<Double>();
static List<Double> yDatal = new ArraylList<Double>();
static List<Double> yData2 = new Arraylist<Double>();

// These arrays is where the two Date files are loaded
static Date[] yearDateTraining = new Date[150];

static String[] strTrainingFileNames = new String[150];
static String[] strTestingFileNames = new String[150];
static String[] strSaveNetworkFileNames = new String[150];

static BufferedReader br3;

static double recordNormInputPriceDiffPerc 00 = 0.00;
static double recordNormInputPriceDiffPerc 01 = 0.00;
static double recordNormInputPriceDiffPerc 02 = 0.00;
static double recordNormInputPriceDiffPerc 03 = 0.00;
static double recordNormInputPriceDiffPerc 04 = 0.00;
static double recordNormInputPriceDiffPerc_05 = 0.00;
static double recordNormInputPriceDiffPerc 06 = 0.00;

469

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

static double recordNormInputPriceDiffPerc_07 = 0.00;
static double recordNormInputPriceDiffPerc_08 = 0.00;
static double recordNormInputPriceDiffPerc 09 = 0.00;
static double recordNormInputPriceDiffPerc 10 = 0.00;
static double recordNormInputPriceDiffPerc 11 = 0.00;

static double recordNormTargetPriceDiffPerc = 0.00;
static double tempMonth = 0.00;
static int intNumberOfSavedNetworks = 0;

static double
static double
static double
static double
static double

[] linkToSaveInputPriceDiffPerc 00 = new double[150];
[
[
[
[
static double|
[
[
[
[
[
[

]
linkToSaveInputPriceDiffPerc 01 = new double[150]
linkToSaveInputPriceDiffPerc 02 = new double[150]
linkToSaveInputPriceDiffPerc 03 = new double[150]
linkToSaveInputPriceDiffPerc_04 = new double[150]
linkToSaveInputPriceDiffPerc 05 = new double[150];
linkToSaveInputPriceDiffPerc 06 = new double[150];
]
]
]
]
]

.
b

)

)

)

static double
static double
static double
static double
static double
static double

)

linkToSaveInputPriceDiffPerc_07 = new double[150
linkToSaveInputPriceDiffPerc 08 = new double[150
linkToSaveInputPriceDiffPerc 09 = new double[150
linkToSaveInputPriceDiffPerc_10 = new double[150
linkToSaveInputPriceDiffPerc 11 = new double[150

)

)

)

]
]
]
]
]
]
]
]
]
]
]
]

)

static int[] returnCodes = new int[3];

static int intDayNumber = 0;

static File file2 = null;

static double[] linkToSaveTargetPriceDiffPerc = new double[150];
static double[] arrPrices = new double[150];

@0verride
public XYChart getChart()

{
// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("Month").yAxisTitle("Price").build();

470

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.getAWTColor
(ChartColor.GREY));

Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));
Chart.getStyler().setChartBackgroundColor (Color.WHITE);
Chart.getStyler().setLegendBackgroundColor(Coloxr.PINK);
Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartTitleBoxBackgroundColox(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED,
Font.BOLD, 24));

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
// Chart.getStyler().setLegendPosition(LegendPosition.InsideSE);
Chart.getStyler().setLegendPosition(LegendPosition.OutsideE);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF,
Font.ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF,
Font.PLAIN, 11));

Chart.getStyler().setDatePattern("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

// Configuration

// Set the mode of running this program
intWorkingMode = 1; // Training mode

if(intWorkingMode == 1)
{

// Training mode
intNumberOfBatchesToProcess = 120;

471

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

strInputFileNameBase =
"C:/My_Neural Network_ Book/Temp Files/Sample7 Microbatches_
Train Batch ";
strSaveNetworkFileNameBase =
"C:/My Neural Network Book/Temp Files/Sample7 Save Network
Batch ";
strChartFileName = "C:/My Neural Network Book/Temp Files/Sample7
XYLineChart Train.jpg";
strDatesTrainFileName =
"C:/My Neural Network Book/Book Examples/Sample7 Dates Real
SP500 3000.csv";
strPricesFileName = "C:/My Neural Network Book/Book Examples/
Sample7 InputPrice SP500 200001 200901.csv";

else

// Testing mode
intNumbexOfBatchesToProcess = 121;
intNumbexrOfSavedNetworks = 120;
strInputFileNameBase =
"C:/My_Neural Network Book/Temp Files/Sample7 Microbatches_
Test Batch ";
strSaveNetworkFileNameBase =
"C:/My_Neural Network Book/Temp_ Files/Sample7 Save Network
Batch ";
strChartFileName =
"C:/My_Neural_Network Book/Book_Examples/Sample7 XYLineChart_
Test.jpg";
strDatesTrainFileName =
"C:/My_Neural Network Book/Book Examples/Sample7 Dates Real
SP500 3000.csv";
trPricesFileName = "C:/My Neural Network Book/Book Examples/
Sample7_InputPrice SP500 200001 200901.csv";

472

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Common configuration
intNumberOfRowsInBatches = 1;
intInputNeuronNumber = 12;
intOutputNeuronNumber = 1;

// Generate training batch file names and the corresponding Save
Network file names and

// save them arrays

for (int i = 0; i < intNumberOfBatchesToProcess; i++)

{
iString

Integer.toString(i);

// Construct the training batch names
if (i < 10)
{

strOutputFileName = strInputFileNameBase + "00" + iString +

strSaveNetworkFileName = strSaveNetworkFileNameBase + "00" +
iString + ".csv";

else
{
if(i »=10 && i < 100)
{
strOutputFileName = strInputFileNameBase + "0" + iString + ".csv";
strSaveNetworkFileName = strSaveNetworkFileNameBase + "0" +

iString + ".csv";
}
else

{
strOutputFileName = strInputFileNameBase + iString + ".csv";
strSaveNetworkFileName = strSaveNetworkFileNameBase +
iString + ".csv";

}

}
473

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL
strSaveNetworkFileNames[i] = strSaveNetworkFileName;

if(intWorkingMode == 1)
{

strTrainingFileNames[i] = strOutputFileName;
File filel = new File(strSaveNetworkFileNames[i]);

if(filel.exists())
filel.delete();

}

else
strTestingFileNames[i] = strOutputFileName;

} // End the FOR loop

// Build the array linkToSaveInputPriceDiffPerc 01
String templine = null;
String[] tempWorkFields = null;

recordNormInputPriceDiffPerc 00 = 0.00;
recordNormInputPriceDiffPerc 01 = 0.00;
recordNoxmInputPriceDiffPerc_02 = 0.00;
recordNormInputPriceDiffPerc 03 = 0.00;
recordNormInputPriceDiffPerc 04 = 0.00;
recordNormInputPriceDiffPerc_05 = 0.00;
recordNormInputPriceDiffPerc_06 = 0.00;
recordNormInputPriceDiffPerc_07 = 0.00;
recordNormInputPriceDiffPerc_08 = 0.00;
recordNormInputPriceDiffPerc_09 = 0.00;
recordNoxmInputPriceDiffPerc_10 = 0.00;
recordNormInputPriceDiffPerc_11 = 0.00;

double recordNormTargetPriceDiffPerc = 0.00;

try
{

for (int m = 0; m < intNumberOfBatchesToProcess; m++)

474

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

if(intWorkingMode == 1)
br3 = new BufferedReader(new FileReader(strTraining
FileNames[m]));

else
br3 = new BufferedReader(new FileReader(strTesting
FileNames[m]));

// Skip the label record
tempLine = br3.readlLine();
tempLine = br3.readline();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

recordNormInputPriceDiffPerc_00
(tempWorkFields[0]);
recordNormInputPriceDiffPerc 01 = Double.parseDouble
(tempWorkFields[1]);

recordNormInputPriceDiffPerc_02 = Double.parseDouble
(tempWorkFields[2]);

recordNormInputPriceDiffPerc_03 = Double.parseDouble
(tempWorkFields[3]);

recordNormInputPriceDiffPerc_04 = Double.parseDouble
(tempWorkFields[4]);

recordNormInputPriceDiffPerc_05 = Double.parseDouble
(tempWorkFields[5]);

recordNormInputPriceDiffPerc 06 = Double.parseDouble
(tempWorkFields[6]);

recordNormInputPriceDiffPerc 07 = Double.parseDouble
(tempWorkFields[7]);

recordNormInputPriceDiffPerc 08 = Double.parseDouble
(tempWorkFields[8]);

recordNormInputPriceDiffPerc 09 = Double.parseDouble
(tempWorkFields[9]);

recordNormInputPriceDiffPerc_10 = Double.parseDouble
(tempWorkFields[10]);

Double.parseDouble

475

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

476

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

recordNormInputPriceDiffPerc_11 = Double.parseDouble
(tempWorkFields[11]);

recordNormTargetPriceDiffPerc = Double.parseDouble
(tempWorkFields[12]);

linkToSaveInputPriceDiffPerc _00[m]

DiffPerc_00;

linkToSaveInputPriceDiffPerc 01[m]

DiffPerc 01;

linkToSaveInputPriceDiffPerc 02[m]

DiffPerc 02;

linkToSaveInputPriceDiffPerc 03[m]

DiffPerc 03;

linkToSaveInputPriceDiffPerc 04[m]

DiffPerc_04;

linkToSaveInputPriceDiffPerc_05[m]

DiffPerc_05;

linkToSaveInputPriceDiffPerc 06[m]

DiffPerc 06;

linkToSaveInputPriceDiffPerc_07[m]

DiffPerc 07;

linkToSaveInputPriceDiffPerc 08[m]

DiffPerc_08;

linkToSaveInputPriceDiffPerc 09[m]

DiffPerc_09;

linkToSaveInputPriceDiffPerc_10[m]

DiffPerc_10;

linkToSaveInputPriceDiffPerc 11[m]

BiffPerc 113

linkToSaveTargetPriceDiffPerc[m] =

DiffPerc;

} // End the FOR loop

// Load dates into memory

loadDatesInMemory();

Dy Profl Engr Mr Santosh Kumar

recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice
recordNormInputPrice

recordNoxrmInputPrice

recordNormTargetPrice

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Load Prices into memory
loadPriceFileInMemory();

file2 = new File(strChartFileName);

if(file2.exists())
file2.delete();

// Test the working mode
if(intWorkingMode == 1)
{
// Train batches and save the trained networks
int paramBatchNumber;

returnCodes[0] = 0; // Clear the error Code
returnCodes[1] = 0; // Set the initial batch Number to 1;
returnCodes[2] = 0; // Set the initial day number;
do

{

paramErrorCode = returnCodes[0];
paramBatchNumber = returnCodes[1];
paramDayNumber = returnCodes[2];

returnCodes =
trainBatches(paramErrorCode, paramBatchNumber, paramDayNumber) ;
} while (returnCodes[0] > 0);

} // End the train logic
else

{

// Load and test the network logic
loadAndTestNetwork();

} // End of ELSE

} // End of Try

477

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

catch (Exception e1)

{

el.printStackTrace();

}
Encog.getInstance().shutdown();

return Chart;

} // End of method

// Load CSV to memory.
// @return The loaded dataset.
/! ===========czz==zcss==sczzssssssssszssSSETSSSSSSSoSSSSESSSSISSSSISSSoS
public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal,
Boolean headers, CSVFormat format, Boolean significance)
{
DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);
MemoryDataloader load = new MemoryDataloader(codec);
MLDataSet dataset = load.external2Memory();
return dataset;

// The main method.

// @param Command line arguments. No arguments are used.

// ===================================s=ssssssssssssoososssssssszsssos
public static void main(String[] args)

{
ExampleChart<XYChart> exampleChart = new Sample7();

XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

478

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Mode 0. Train batches as individual networks, saving them in separate
files on disk.

static public int[] trainBatches(int paramErrorCode,int paramBatch
Number,
int paramDayNumber)

int rBatchNumber;

double realDenormTargetToPredictPricePerc = 0;
double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double normTargetPriceDiffPerc = 0.00;

double normPredictPriceDiffPerc = 0.00;

double normInputPriceDiffPercFromRecord = 0.00;
double denormTargetPriceDiffPerc;

double denormPredictPriceDiffPerc;

double denormInputPriceDiffPercFromRecord;
double workNormInputPrice;

Date tempDate;

double trainError;

double realDenormPredictPrice;

double realDenormTargetPrice;

// Build the network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new BasiclLayer(null,true,intInputNeuronNumber));

// Hidden layer.

network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));

479

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

480

network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,25));

// Output layer
network.addLayer(new BasicLayer(new ActivationTANH(),false,intOutputN
euronNumber));

network.getStructure().finalizeStructure();
network.reset();

// Loop over batches
intDayNumber = paramDayNumber; // Day number for the chart

for (rBatchNumber = paramBatchNumber; rBatchNumber < intNumberOf
BatchesToProcess;
rBatchNumber++)

intDayNumber++;

//if(rBatchNumber == 201)
// rBatchNumber = rBatchNumber;

// Load the training CVS file for the current batch in memory

MLDataSet trainingSet = loadCSV2Memory(strTrainingFileNames

[rBatchNumber],
intInputNeuronNumber,intOutputNeuronNumber,true,CSVFormat.
ENGLISH, false);

// train the neural network
ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;
double templLastErrorPerc = 0.00;

do
{

train.iteration();

epoch++;

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

for (MLDataPair pairi: trainingSet)

{

}
if
{

MLData inputData = pairi.getInput();
MLData actualData = pairi.getIdeal();
MLData predictData = network.compute(inputData);

// These values are normalized
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);

// De-normalize these values

denormTargetPriceDiffPerc = ((targetPriceDiffPercDl - target
PriceDiffPercDh)*normTargetPriceDiffPerc - Nh*targetPrice
DiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);

denormPredictPriceDiffPerc =((targetPriceDiffPercDl - target
PriceDiffPercDh)*normPredictPriceDiffPerc - Nh*target
PriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);

inputPriceFromFile = arrPrices[rBatchNumber+12];

realDenormTargetPrice = inputPriceFromFile + inputPriceFrom
File*denormTargetPriceDiffPerc/100;

realDenormPredictPrice = inputPriceFromFile + inputPriceFrom
File*denormPredictPriceDiffPerc/100;

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenormTarget
Price)*100;

(epoch >= 500 && realDenormTargetToPredictPricePerc > 0.00091)

returnCodes[0] = 1;
returnCodes[1] = rBatchNumber;
returnCodes[2] = intDayNumber-1;

481

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

482

//System.out.println("Try again");
return returnCodes;

}

//System.out.println(realDenormTargetToPredictPricePerc);
} while(realDenormTargetToPredictPricePerc > 0.0009);

// This batch is optimized

// Save the network for the current batch
EncogDirectoryPersistence.saveObject(newFile(strSaveNetworkFileNames
[rBatchNumber]),network);

// Print the trained neural network results for the batch
//System.out.println("Trained Neural Network Results");

// Get the results after the network optimization
int i = - 1; // Index of the array to get results

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

//if (rBatchNumber == 857)
/l i =i

// Validation
for (MLDataPair pair: trainingSet)

{

i++;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);
//normInputPriceDiffPercFromRecord[i] = inputData.getData(0);
normInputPriceDiffPercFromRecord = inputData.getData(0);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// De-normalize this data to show the real result value
denormTargetPriceDiffPerc = ((targetPriceDiffPercDl - targetPrice
DiffPercDh)*normTargetPriceDiffPerc - Nh*targetPriceDiffPercDl +
targetPriceDiffPercDh*N1)/(N1 - Nh);

denormPredictPriceDiffPerc =((targetPriceDiffPercDl - targetPrice
DiffPercDh)*normPredictPriceDiffPerc - Nh*targetPriceDiffPercDl +
targetPriceDiffPercDh*N1)/(N1 - Nh);

denormInputPriceDiffPercFromRecord = ((inputPriceDiffPercDl - input
PriceDiffPercDh)*normInputPriceDiffPercFromRecord - Nh*input
PriceDiffPercDl + inputPriceDiffPercDh*N1)/(N1 - Nh);

// Get the price of the 12th element of the row
inputPriceFromFile = arrPrices[rBatchNumber+12];

// Convert denormPredictPriceDiffPerc and denormTargetPriceDiffPerc
// to real de-normalized prices

realDenormTargetPrice = inputPriceFromFile + inputPriceFromFile*
(denormTargetPriceDiffPerc/100);

realDenormPredictPrice = inputPriceFromFile + inputPriceFromFile*
(denormPredictPriceDiffPerc/100);
realDenormTargetToPredictPricePerc = (Math.abs(realDenormTarget
Price - realDenormPredictPrice)/realDenormTargetPrice)*100;

System.out.printIn("Month = " + (rBatchNumber+1) + " targetPrice = " +
realDenormTargetPrice + "
Price + "

predictPrice = " + realDenormPredict
diff = " + realDenormTargetToPredictPricePerc);

if (realDenormTargetToPredictPricePerc > maxGlobalResultDiff)

{

maxGlobalResultDiff = realDenormTargetToPredictPricePerc;

}

sumGlobalResultDiff = sumGlobalResultDiff + realDenormTargetTo
PredictPricePerc;

483

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Populate chart elements

tempDate = yearDateTraining[rBatchNumber+14];
//xData.add(tempDate);

tempMonth = (double) rBatchNumber+14;
xData.add(tempMonth);
yDatal.add(realDenormTargetPrice);
yData2.add(realDenormPredictPrice);

} // End for Price pair loop

} // End of the loop over batches

Chart.addSeries("Actual price", xData, yData1i);
Chart.addSeries("Predicted price", xData, yData2);

XYSeries seriesil
XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesl.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Print the max and average results
averGlobalResultDiff = sumGlobalResultDiff/intNumberOfBatchesToProcess;

System.out.println(" ");

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff);
System.out.println("averGlobalResultDiff = " + averGlobalResultDiff);
System.out.println(" ");

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

484

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

System.out.println ("Chart and Network have been saved");
System.out.println("End of validating batches for training");

returnCodes[0] = 0;
returnCodes[1] = 0;
returnCodes[2] = 0;

return returnCodes;
} // End of method

// Mode 1. Load the previously saved trained network and process test
mini-batches

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

List<Double> xData = new ArrayList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double realDenormTargetToPredictPricePerc = 0;
double maxGlobalResultDiff = 0.00;

double averGlobalResultDiff = 0.00;

double sumGlobalResultDiff = 0.00;

double maxGlobalIndex = 0;

recordNormInputPriceDiffPerc_00 = 0.00;
recordNormInputPriceDiffPerc 01 = 0.00;
recordNormInputPriceDiffPerc 02 = 0.00;
recordNormInputPriceDiffPerc 03 = 0.00;
recordNormInputPriceDiffPerc 04 = 0.00;
recordNormInputPriceDiffPerc_05 = 0.00;
recordNormInputPriceDiffPerc 06 = 0.00;
recordNormInputPriceDiffPerc_07 = 0.00;
recordNormInputPriceDiffPerc_08 = 0.00;

485

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

recordNormInputPriceDiffPerc_09 = 0.00;
recordNormInputPriceDiffPerc_10 = 0.00;
recordNormInputPriceDiffPerc_11 = 0.00;

double recordNormTargetPriceDiffPerc = 0.00;
double normTargetPriceDiffPerc;

double normPredictPriceDiffPerc;

double normInputPriceDiffPercFromRecord;
double denormTargetPriceDiffPerc;

double denormPredictPriceDiffPerc;

double denormInputPriceDiffPercFromRecord;
double realDenormTargetPrice = 0.00;
double realDenormPredictPrice = 0.00;
double minVectorValue = 0.00;

String templine;

String[] tempWorkFields;

int tempMinIndex = 0;

double rTempPriceDiffPerc = 0.00;

double rTempKey = 0.00;

double vectorForNetworkRecord = 0.00;
double r 00 = 0.00;

double r 01 = 0.00;
double r 02 = 0.00;
double r 03 = 0.00;
double r_04 = 0.00;
double r_05 = 0.00;
double r 06 = 0.00;
double r 07 = 0.00;
double r 08 = 0.00;
double r 09 = 0.00;
double r 10 = 0.00;

double r 11 = 0.00;

double vectorDiff;

double r1 = 0.00;

double r2 = 0.00;

double vectorForRecord = 0.00;

486

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

int k1 = 0;
int k3 = 0;

BufferedReader br4;
BasicNetwork network;

try
{
maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

for (ki
{

0; k1 < intNumberOfBatchesToProcess; ki++)
br4 = new BufferedReader(new FileReader(strTestingFileNames[k1]));
tempLine = br4.readlLine();

// Skip the label record
tempLine = br4.readlLine();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

recordNormInputPriceDiffPerc 00

Double.parseDouble(tempWork

Fields[0]);
recordNormInputPriceDiffPerc 01 = Double.parseDouble(tempWork
Fields[1]);
recordNormInputPriceDiffPerc 02 = Double.parseDouble(tempWork
Fields[2]);
recordNoxrmInputPriceDiffPerc_03 = Double.parseDouble(tempWork
Fields[3]);
recordNormInputPriceDiffPerc 04 = Double.parseDouble(tempWork
Fields[4]);
recordNormInputPriceDiffPerc 05 = Double.parseDouble(tempWork
Fields[5]);
recordNormInputPriceDiffPerc_06 = Double.parseDouble(tempWork
Fields[6]);
recordNormInputPriceDiffPerc_07 = Double.parseDouble(tempWork
Fields[7]);

487

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

488

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

recordNormInputPriceDiffPerc_08
Fields[8]);
recordNormInputPriceDiffPerc_09
Fields[9]);
recordNormInputPriceDiffPerc 10
Fields[10]);
recordNormInputPriceDiffPerc 11
Fields[11]);

Double.parseDouble(tempWork

Double.parseDouble(tempWork

Double.parseDouble(tempWork

Double.parseDouble(tempWork

recordNormTargetPriceDiffPerc = Double.parseDouble(tempWork
Fields[12]);

if(k1 < 120)
{
// lLoad the network for the current record
network = (BasicNetwork)EncogDirectoryPersistence.loadObject
(newFile(strSaveNetworkFileNames[k1]));

// Load the training file record

MLDataSet testingSet = loadCSV2Memory(strTestingFileNames[k1],
intInputNeuronNumber, intOutputNeuronNumber,true,
CSVFormat.ENGLISH,false);

// Get the results from the loaded previously saved networks
int 1 & - 43

for (MLDataPair pair: testingSet)

{
i++;
MLData inputData = pair.getInput();

MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);
normInputPriceDiffPercFromRecord = inputData.getData(11);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// De-normalize this data

denormTargetPriceDiffPerc = ((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normTargetPriceDiffPerc - Nh*target
PriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);
denormPredictPriceDiffPerc =((targetPriceDiffPercDl -
targetPriceDiffPercDh)*noxrmPredictPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/(NL - Nh);

denormInputPriceDiffPercFromRecord = ((inputPriceDiff
PercDl - inputPriceDiffPercDh)*normInputPriceDiffPercFrom
Record - Nh*inputPriceDiffPercDl + inputPriceDiff
PercDh*N1)/(N1 - Nh);

inputPriceFromFile = arrPrices[ki+12];

// Convert denormPredictPriceDiffPerc and denormTarget
PriceDiffPerc to a real

// de-normalize price

realDenormTargetPrice = inputPriceFromFile + inputPrice

FromFile*(denormTargetPriceDiffPerc/100);

realDenormPredictPrice = inputPriceFromFile + inputPrice

FromFile*(denormPredictPriceDiffPerc/100);

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenormTarget
Price)*100;

System.out.println("Month = " + (k1+1) + " targetPrice = " +
realDenormTargetPrice + " predictPrice = " + real

DenormPredictPrice + " diff = " + realDenormTargetTo

PredictPricePerc);
} // End for pair loop

} // End for IF

489

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

else

{

vectorForRecord = Math.sqrt(
Math.pow(recordNormInputPriceDiffPerc_00,2)
Math.pow(recordNormInputPriceDiffPerc 01,2)
Math.pow(recordNormInputPriceDiffPerc 02,2)
Math.pow(recordNormInputPriceDiffPerc 03,2)
Math.pow(recordNormInputPriceDiffPerc 04,2)
Math.pow(recordNormInputPriceDiffPerc 05,2)
Math.pow(recordNormInputPriceDiffPerc 06,2)
Math.pow(recordNormInputPriceDiffPerc 07,2)
Math.pow(recordNormInputPriceDiffPerc 08,2)
Math.pow(recordNormInputPriceDiffPerc 09,2)
Math.pow(recordNormInputPriceDiffPerc_10,2)
Math.pow(recordNormInputPriceDiffPerc_11,2));

+ + + + + + + + + + +

// Look for the network of previous days that closely
matches
// the value of vectorForRecord

minVectorValue = 999.99;

for (k3 = 0; k3 < intNumberOfSavedNetworks; k3++)
{
r 00 = linkToSaveInputPriceDiffPerc_00[k3
r 01 = linkToSaveInputPriceDiffPerc_01[k3
r_02 = linkToSaveInputPriceDiffPerc_o02[k3
r 03 = linkToSaveInputPriceDiffPerc_03[k3
r 04 = linkToSaveInputPriceDiffPerc 04[k3
r 05 = linkToSaveInputPriceDiffPerc 05[k3
r 06 = linkToSaveInputPriceDiffPerc_06[k3
r 07 = linkToSaveInputPriceDiffPerc 07[k3
r 08 = linkToSaveInputPriceDiffPerc 08[k3
r 09 = linkToSaveInputPriceDiffPerc 09[k3
r 10 = linkToSaveInputPriceDiffPerc_10[k3
r 11 = linkToSaveInputPriceDiffPerc_11[k3

b

)

3

b

b

J

)

)

J

)

)

b

—) e)) e e e e e ed

490

Dy Profl Engr Mr Santosh Kumar

r2 =

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

linkToSaveTargetPriceDiffPerc[k3];

vectorForNetworkRecord = Math.sqrt(

Math
Math

Math
Math

Math

.pow(r 02,2)
.pow(r_03,2)
.pow(r_04,2)
Math.
Math.
Math.
Math.
Math.
Math.

.pow(r_00,2) +
Math.

pow(r_01,2)

+

pow(r 05,2)
pow(r 06,2)
pow(r_07,2)
pow(r 08,2)
pow(r_09,2)
pow(r_10,2)

+ + + + + + + + +

.pow(r_11,2));

vectorDiff = Math.abs(vectorForRecord - vectorFor

NetworkRecord);

if(vectoxrDiff < minVectorValue)

{

minVectorValue = vectorDiff;

// Save this network record attributes
rTempKey = r_00;

rTempPriceDiffPerc = r2;

tempMinIndex = k3;

}
} // End FOR

k3 loop

network = (BasicNetwork)EncogDirectoryPersistence.loadObject
(newFile(strSaveNetworkFileNames[tempMinIndex]));

// Now, tempMinIndex points to the corresponding saved network
// Load this network

MLDataSet testingSet = loadCSV2Memory(strTestingFileNames[k1],
intInputNeuronNumber,intOutputNeuronNumber,true,CSVFormat.
ENGLISH, false);

491

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

492

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// Get the results from the previously saved and now loaded

network

int 1 = = d3

for (MLDataPair pair: testingSet)

{

it++;
MLData inputData = pair.getInput();

MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);
normInputPriceDiffPercFromRecord = inputData.getData(11);

// Renormalize this data to show the real result value
denormTargetPriceDiffPerc = ((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normTargetPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/

(N1 - Nh);

denormPredictPriceDiffPerc =((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normPredictPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/
(NL - Nh);

denormInputPriceDiffPercFromRecord = ((inputPriceDiff
PercDl - inputPriceDiffPercDh)*normInputPriceDiffPerc
FromRecord - Nh*inputPriceDiffPercDl + inputPriceDiff
PercDh*N1)/(N1 - Nh);

inputPriceFromFile = arrPrices[ki+12];

// Convert denormPredictPriceDiffPerc and
denormTargetPriceDiffPerc to a real

// demoralize prices

realDenormTargetPrice = inputPriceFromFile +

inputPriceFromFile*(denormTargetPriceDiffPerc/100);

Dy Profl Engr Mr Santosh Kumar

}

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

realDenormPredictPrice = inputPriceFromFile + inputPriceFrom
File*(denormPredictPriceDiffPerc/100);

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenormTarget
Price)*100;

System.out.println("Month = " + (ki+1) + " targetPrice =
" + realDenormTargetPrice + " predictPrice = " + real
DenormPredictPrice + " diff = " + realDenormTargetTo
PredictPricePerc);

if (realDenormTargetToPredictPricePerc > maxGlobal
ResultDiff)

{

maxGlobalResultDiff = realDenormTargetToPredict
PricePerc;

}

sumGlobalResultDiff = sumGlobalResultDiff + realDenorm
TargetToPredictPricePerc;

} // End of IF
} // End for pair loop
// Populate chart elements

tempMonth = (double) ki+14;
xData.add(tempMonth);
yDatail.add(realDenormTargetPrice);
yData2.add(realDenormPredictPrice);

// End of loop K1

// Print the max and average results

System.out.println(" ");
System.out.println(" ");
System.out.println("Results of processing testing batches");

493

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

averGlobalResultDiff = sumGlobalResultDiff/intNumberOfBatches
ToProcess;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +

" i ="+ maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResult
Ditf);

System.out.println(" ");
System.out.println(" ");

} // End of TRY
catch (IOException e1)
{

el.printStackTrace();

}

// All testing batch files have been processed
XYSeries seriesl = Chart.addSeries("Actual Price", xData, yDatal);
XYSeries series2 = Chart.addSeries("Forecasted Price", xData,
yData2);

seriesi.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

494

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

System.out.println ("The Chart has been saved");
System.out.println("End of testing for mini-batches training");

} // End of the method

public static void loadDatesInMemory()
{

BufferedReader bri = null;
DateFormat sdf = new SimpleDateFormat("yyyy-MM");

Date dateTemporateDate = null;
String strTempKeyorateDate;
int intTemporateDate;

nn,

String line = "%;
String cvsSplitBy = ",";

try
{
bri = new BufferedReader(new FileReader(strDatesTrainFileName));
int 3 = <13
int r = -2;

while ((line = bri.readlLine()) != null)
{
i++;
T++;
// Skip the header line
if(i » 0)
{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

495

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

strTempKeyorateDate = workFields[0];
intTemporateDate = Integer.parseInt(strTempKeyorateDate);

try
{

dateTemporateDate = convertIntegerToDate(intTemporateDate);

}

catch (ParseException e)

{
e.printStackTrace();

System.exit(1);
t

yearDateTraining[r] = dateTemporateDate;

}
} // end of the while loop

bri.close();

}
catch (IOException ex)

{

ex.printStackTrace();
System.err.println("Error opening files = " + ex);
System.exit(1);

public static Date convertIntegerToDate(int denormInputDateI) throws
ParseException

{

496

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

int numberOfYears = denormInputDateI/12;
int numberOfMonths = denormInputDatel - numberOfYears*12;

if (numberOfMonths == 0)
{

numberOfYears = numberOfYears - 1;
numberOfMonths = 12;

}
String strNumberOfYears = Integer.toString(numberOfYears);

if(numberOfMonths < 10)

{
strNumberOfMonths = Integer.toString(numberOfMonths);
strNumberOfMonths = "0" + strNumberOfMonths;

}

else

{
strNumbexrOfMonths = Integer.toString(numberOfMonths);

}

//strYearMonth = "01-" + strNumberOfMonths + "-" + stxrNumberOfYears +
"T09:00:00. OOOZ";
strYearMonth = strNumberOfYears + "-" + strNumberOfMonths;

DateFormat sdf = new SimpleDateFormat("yyyy-MM");

try

{
workDate = sdf.parse(strYearMonth);

}

catch (ParseException e)

{
e.printStackTrace();

}

return workDate;

} // End of method

497

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

public static String convertIntegerToString(int denormInputDatelI)

{

int numberOfYears = denormInputDatel/12;
int numberOfMonths = denormInputDatel - numberOfYears*12;

if (numberOfMonths == 0)
{

numberOfYears = numberOfYears - 1;
numberOfMonths = 12;

}
String strNumberOfYears = Integer.toString(numberOfYears);

if(numberOfMonths < 10)

{
strNumberOfMonths = Integer.toString(numberOfMonths);
strNumberOfMonths = "0" + strNumberOfMonths;
}
else
{
strNumberOfMonths = Integer.toString(numberOfMonths);
}
strYearMonth = strNumberOfYears + "-" + strNumberOfMonths;

return strYearMonth;

} // End of method

498

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

public static void loadPriceFileInMemory()

{

BufferedReader bri = null;

nn

String line = "";
String cvsSplitBy = ",";
String strTempKeyPrice = "";

double tempPrice = 0.00;

try
{
br1 = new BufferedReader(new FileReader(strPricesFileName));
int I = -13
int r = -2;

while ((1line = bri.readlLine()) != null)
{
i++;
T++;
// Skip the header line
if(i » 0)
{

// Break the line using comma as separator
String[] workFields = line.split(cvsSplitBy);

strTempKeyPrice = workFields[0];
tempPrice = Double.parseDouble(strTempKeyPrice);
arrPrices[r] = tempPrice;

}
} // end of the while loop

bri.close();

499

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

catch (IOException ex)

{
ex.printStackTrace();
System.exr.println("Exrror opening files = " + ex);
System.exit(1);

}

}
} // End of the Encog class

Training Process

For the most part, the training method logic is similar to what was used in the preceding
examples, so it does not need any explanation, with the exception of one part that [will
discuss here.

Sometimes you have to deal with functions that have very small values, so
the calculated errors are even smaller. For example, the network errors can reach
microscopic values such as 14 or more zeros after the dot, as in 0.000000000000025.
When you get such errors, you will start questioning the accuracy of the calculation. In
this code, I have included an example of how to handle such a situation.

Instead of simply calling the train.getError () method to determine the network
error, you use a pair data set to retrieve the input, actual, and predicted function values
from the network for each epoch; denormalize those values; and calculate the error
percent difference between the calculated and actual values. You then exit from the pair
loop with a returnCode value of 0 when this difference is less than the error limit. This is
shown in Listing 11-4.

Listing 11-4. Checking the Error Using the Actual Function Values

int epoch = 1;
double tempLastErrorPerc = 0.00;

do

train.iteration();
epoch++;

500

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

for (MLDataPair pairi: trainingSet)

{

}

MLData inputData = pairi.getInput();
MLData actualData = pairi.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);

denormTargetPriceDiffPerc = ((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normTargetPriceDiffPerc - Nh*target
PriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);

denormPredictPriceDiffPerc =((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normPredictPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);

inputPriceFromFile = arrPrices[rBatchNumber+12];

realDenormTargetPrice = inputPriceFromFile + inputPriceFrom
File*denormTargetPriceDiffPerc/100;

realDenormPredictPrice = inputPriceFromFile + inputPriceFrom
File*denormPredictPriceDiffPerc/100;

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenormTarget
Price)*100;

if (epoch >= 500 8& realDenormTargetToPredictPricePerc > 0.00091)

{

}

returnCodes[0] = 1;
returnCodes[1] = rBatchNumber;
returnCodes[2] = intDayNumber-1;

return returnCodes;

} while(realDenormTargetToPredictPricePerc > 0.0009);

501

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

Training Results

Listing 11-5 shows the training results.

Listing 11-5. Training Results

Month = 1 targetPrice
diff = 7.46675E-4
Month = 2 targetPrice
diff = 8.14930E-5
Month = 3 targetPrice
diff = 8.82808E-4
Month = 4 targetPrice
diff = 2.55914E-4
Month = 5 targetPrice
diff = 4.21901E-4
Month = 6 targetPrice
diff = 6.25530E-4
Month = 7 targetPrice
diff = 8.94046E-4
Month = 8 targetPrice
diff = 1.57184E-4
Month = 9 targetPrice
diff = 8.97819E-4
Month = 10 targetPrice
diff = 8.51147E-4
Month = 11 targetPrice
diff = 7.66679E-5
Month = 12 targetPrice
diff = 5.24564E-4
Month = 13 targetPrice
diff = 3.12787E-4
Month = 14 targetPrice
diff = 2.46409E-4
Month = 15 targetPrice
diff = 4.28291E-4

502

1239.

1160.

1249.

1255.

1224.

1211.

1133

1040.

1059.

1139.

1148.

1130.

1106.

1147.

1076.

94000

33000

46000

82000

38000

23000

58000

94000

78000

45000

08000

20000

73000

39000

92000

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Dy Profl Engr Mr Santosh Kumar

1239.

1160.

1249

1255.

1224.

1211

1133.

1040.

1059

1139

1148.

1130.

1106.

1147.

1076.

93074

32905

.44897

81679

37483

.23758

59013

94164

.78951

-45977

07912

20593

72654

39283

92461

Month = 16 targetPrice
diff = 8.88156E-4
Month = 17 targetPrice
diff = 8.77328E-4
Month = 18 targetPrice
diff = 5.91142E-4
Month = 19 targetPrice
diff = 1.32725E-4
Month = 20 targetPrice
diff = 8.22304E-4
Month = 21 targetPrice
diff = 8.72729E-4
Month = 22 targetPrice
diff = 2.89468E-4
Month = 23 targetPrice
diff = 8.41647E-4
Month = 24 targetPrice
diff = 3.58321E-5
Month = 25 targetPrice
diff = 8.80559E-4
Month = 26 targetPrice
diff = 3.22296E-4
Month = 27 targetPrice
diff = 6.11352E-4
Month = 28 targetPrice
diff = 1.74172E-4
Month = 29 targetPrice
diff = 5.81287E-4
Month = 30 targetPrice
diff = 7.17406E-4
Month = 31 targetPrice
diff = 1.37856E-4
Month = 32 targetPrice
diff = 8.29902E-4
Month = 33 targetPrice
diff = 4.42062E-5

CHAPTER 11

1067.14000

989.819999

911.620000

916.070000

815.280000

885.760000

936.310000

879.820000

855.700000

841.150000

848.180000

916.920000

963.590000

974.500000

990.310000

1008.01000

995.970000

1050.71000

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Dy Profl Engr Mr Santosh Kumar

1067.14948

989

911.

916

815.

885.

936.

879.

855.

841.

848.

916.

963.

974.

990.

.811316

625389

.071216

286704

767730

307290

812595

700307

157407

177279

914394

591678

505665

302895

1008.00861

995

.961734

1050.70954

503

CHAPTER 11

Month = 34 targetPrice
diff = 2.93192E-4
Month = 35 targetPrice
diff = 5.34581E-4
Month = 36 targetPrice
diff = 5.73549E-4
Month = 37 targetPrice
diff = 2.09638E-4
Month = 38 targetPrice
diff = 6.63273E-4
Month = 39 targetPrice
diff = 1.25932E-4
Month = 40 targetPrice
diff = 6.62989E-5
Month = 41 targetPrice
diff = 7.49212E-4
Month = 42 targetPrice
diff = 5.42328E-4
Month = 43 targetPrice
diff = 7.77377E-5
Month = 44 targetPrice
diff = 2.75127E-4
Month = 45 targetPrice
diff = 6.74391E-4
Month = 46 targetPrice
diff = 7.58801E-4
Month = 47 targetPrice
diff = 4.97593E-7
Month = 48 targetPrice
diff = 3.84576E-4
Month = 49 targetPrice
diff = 7.75922E-4
Month = 50 targetPrice
diff = 8.51986E-4
Month = 51 targetPrice
diff = 6.87168E-4

504

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

1058.20000 predictPrice

1111.92000 predictPrice

1131.13000 predictPrice

1144.94000 predictPrice

1126.21000 predictPrice

1107.30000 predictPrice

1120.68000 predictPrice

1140.84000 predictPrice

1101.72000 predictPrice

1104.24000 predictPrice

1114.58000 predictPrice

1130.20000 predictPrice

.82000

1173 predictPrice

1211.92000 predictPrice

1181.27000 predictPrice

1203.60000 predictPrice

1180.59000 predictPrice

1156.85000 predictPrice

Dy Profl Engr Mr Santosh Kumar

1058.

1134.

1131.

1144.

1126.

1107.

1120.

1140.

1101.

1104.

1114.

1130.

1173

1211.

1181.

1203.

1180.

1156.

19690

91406

12351

94240

21747

30139

67926

83145

72597

23914

58307

19238

82891

92000

27454

60934

60006

85795

Month = 52 targetPrice
diff = 6.89121E-5
Month = 53 targetPrice
diff = 1.84938E-4
Month = 54 targetPrice
diff = 1.14272E-4
Month = 55 targetPrice
diff = 2.26146E-4
Month = 56 targetPrice
diff = 3.15986E-4
Month = 57 targetPrice
diff = 4.81617E-4
Month = 58 targetPrice
diff = 7.52722E-4
Month = 59 targetPrice
diff = 6.78199E-4
Month = 60 targetPrice
diff = 1.22483E-5
Month = 61 targetPrice
diff = 7.42312E-4
Month = 62 targetPrice
diff = 7.51869E-4
Month = 63 targetPrice
diff = 3.48001E-4
Month = 64 targetPrice
diff = 2.43538E-4
Month = 65 targetPrice
diff = 8.21560E-5
Month = 66 targetPrice
diff = 3.26854E-5
Month = 67 targetPrice
diff = 6.70418E-4
Month = 68 targetPrice
diff = 2.75638E-4
Month = 69 targetPrice
diff = 5.01556E-4

CHAPTER 11

1191.50000

1191.32000

1234.18000

1220.33000

1228.81000

1207.01000

1249.48000

1248.29000

1280.08000

1280.66000

1294.87000

1310.61000

1270.09000

1270.20000

1276.66000

1303.82000

1335.85000

1377.94000

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Dy Profl Engr Mr Santosh Kumar

1191.

1191.

1234.

1220.

1228.

1207

1249

1248.

1280

1280.

1294.

1310.

1270

1270.

1276.

1303.

1335.

1377.

50082

32780

18141

33276

80612

.00419

.48941

28153

.07984

66951

86026

60544

.08691

19896

66042

82874

84632

94691

505

CHAPTER 11

Month = 70 targetPrice
diff = 2.70408E-4
Month = 71 targetPrice
diff = 8.34099E-4
Month = 72 targetPrice
diff = 4.93547E-4
Month = 73 targetPrice
diff = 3.56083E-4
Month = 74 targetPrice
diff = 2.13861E-4
Month = 75 targetPrice
diff = 5.44135E-4
Month = 76 targetPrice
diff = 7.96965E-4
Month = 77 targetPrice
diff = 6.44500E-4
Month = 78 targetPrice
diff = 7.77012E-4
Month = 79 targetPrice
diff = 8.82764E-4
Month = 80 targetPrice
diff = 3.23149E-4
Month = 81 targetPrice
diff = 3.10035E-4
Month = 82 targetPrice
diff = 5.52989E-4
Month = 83 targetPrice
diff = 8.64876E-4
Month = 84 targetPrice
diff = 8.98605E-4
Month = 85 targetPrice
diff = 8.84310E-4
Month = 86 targetPrice
diff = 8.23113E-4
Month = 87 targetPrice
diff = 5.34831E-4

506

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

1400.63000 predictPrice

1418.30000 predictPrice

1438.24000 predictPrice

1406.82000 predictPrice

1420.86000 predictPrice

1482.37000 predictPrice

62000

1530. predictPrice

1503.35000 predictPrice

.27000

1455 predictPrice

1473.99000 predictPrice

1526.75000 predictPrice

38000

1549. predictPrice

1481.14000 predictPrice

1468.36000 predictPrice

1378.55000 predictPrice

1330.63000 predictPrice

1322.70000 predictPrice

1385.59000 predictPrice

Dy Profl Engr Mr Santosh Kumar

1400.

1418.

1438.

1406.

1420.

1482.

1530.

1503.

1455.

1474.

1526.

1549.

1481.

1468.

1378.

1330.

1322.

1385.

63379

31183

24710

81500

86304

37807

60780

35969

25870

00301

74507

38480

14819

34730

53761

64177

71089

58259

Month = 88 targetPrice
diff = 8.93019E-4
Month = 89 targetPrice
diff = 8.38844E-4
Month = 90 targetPrice
diff = 8.77235E-4
Month = 91 targetPrice
diff = 3.40160E-4
Month = 92 targetPrice
diff = 1.38537E-4
Month = 93 targetPrice
diff = 6.85325E-4
Month = 94 targetPrice
diff = 4.19700E-4
Month = 95 targetPrice
diff = 9.86647E-5
Month = 96 targetPrice
diff = 3.06702E-4
Month = 97 targetPrice
diff = 1.51705E-5
Month = 98 targetPrice
diff = 7.04777E-4
Month = 99 targetPrice
diff = 8.17698E-4
Month = 100 targetPrice
diff = 5.12104E-4
Month = 101 targetPrice
diff = 8.75905E-4
Month = 102 targetPrice
diff = 5.80499E-4
Month = 103 targetPrice
diff = 1.60605E-4
Month = 104 targetPrice
diff = 8.30374E-4
Month = 105 targetPrice
diff = 5.79388E-5

CHAPTER 11

1400.38000

1279.99999

1267.38

1282.83000

1166.36000

968.750000

896.24000

903.250006

825.880000

735.090000

797.870000

872.810000

919.14000

919.32000

987.48000

1020.6200

1057.0800

1036.1900

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Dy Profl Engr Mr Santosh Kumar

1400.36749

1279.98926

1267.39112

1282.82564

1166.35838

968.756639

896.236238

903.250891

825.877467

735.089888

797.864377

872.817137

919.144707

919.311948

987.485732

1020.62163

1057.07122

1036.18940

507

CHAPTER 11

Month = 106 targetPrice
diff = 8.54512E-4

Month = 107 targetPrice
diff = 1.86440E-4

Month = 108 targetPrice
diff = 8.95733E-4

Month = 109 targetPrice
diff = 8.10355E-4

Month = 110 targetPrice
diff = 5.26459E-4

Month = 111 targetPrice
diff = 2.39657E-5

Month = 112 targetPrice
diff = 8.16044E-4

Month = 113 targetPrice
diff = 5.57237E-4

Month = 114 targetPrice
diff = 8.12503E-4

Month = 115 targetPrice
diff = 8.06520E-4

Month = 116 targetPrice
diff = 6.1701E-4

Month = 117 targetPrice
diff = 8.705E-4

Month = 118 targetPrice
diff = 4.763E-4

Month = 119 targetPrice
diff = 5.628E-4

Month = 120 targetPrice
diff = 7.608E-4

1095.

1115

1073

1104.

1169

1186

1089

1030.

1101

1049

1141.

1183.

1180.

1257

1286.

6300

.1000

.8700

4900

-4300

.6900

.4100

7100

.6000

3300

2000

2600

5500

.6400

1200

maxErrorPerc = 7.607871107092592E-4

averErrorPerc = 6.339892589243827E-6

508

Dy Profl Engr Mr Santosh Kumar

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

1095.

1115

1073.

1104.

1169.

1186

1089

1030.

1101.

1049.

1141.

1183.

1180.

1257.

1286.

63936

.09792

87962

48105

42384

.68972

.40111

71574

59105

32154

20704

27030

54438

63292

11021

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

The log shows that because of the use of the micro-batch method, the approximation
results for this noncontinuous function are pretty good.

maxErrorDifferencePerc < 0.000761% and averErrorDifferencePerc < 0.00000634%
Figure 11-4 shows the chart of the training/validating results.

Figure 11-4. Chart of the training results

Testing Data Set

The testing data set has the same format as the training data set. As mentioned at the
beginning of this example, the goal is to predict the market price for the next month,
based on the ten-year historical data. Therefore, the testing data set is the same as the
training data set, but it should include at the end one extra micro-batch record, which
will be used for next month'’s price prediction (outside of the network training range).
Table 11-5 shows a fragment of the price difference testing data set.

509

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-5. Fragment of the Price Difference Testing Data Set

priceDiffPerc targetPriceDiffPerc Date inputPrice
5.840553677 5.857688372 199704 801.34
5.857688372 4.345263356 199705 848.28
4.345263356 7.814583004 199706 885.14
7.814583004 -5.746560342 199707 954.31
-5.746560342 5.315352374 199708 899.47
5.315352374 -3.447766236 199709 947.28
-3.447766236 4.458682294 199710 914.62
4.458682294 1.573163073 199711 955.4
1573163073 1.015013963 199712 970.43
1.015013963 7.04492594 199801 980.28
7.04492594 4.994568014 199802 1049.34
4.994568014 0.907646925 199803 1101.75
0.907646925 -1.882617495 199804 1111.75
-1.882617495 3.943822079 199805 1090.82
3.943822079 -1.161539547 199806 1133.84
-1.161539547 -14.57967109 199807 1120.67
-14.57967109 6.239553736 199808 957.28
6.239553736 8.029419573 199809 1017.01
8.029419573 5.91260342 199810 1098.67
5.91260342 5.63753083 199811 1163.63
5.63753083 4.10094124 199812 1229.23
4.10094124 -3.228251696 199901 1279.64
-3.228251696 3.879418249 199902 1238.33
3.879418249 3.79439819 199903 1286.37
3.79439819 -2.497041597 199904 1335.18

(continued)
510

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

Table 11-5. (continued)

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

priceDiffPerc targetPriceDiffPerc Date inputPrice
-2.497041597 5.443833344 199905 1301.84
5.443833344 -3.204609859 199906 1372.71
-3.204609859 -0.625413932 199907 1328.72
-0.625413932 -2.855173772 199908 1320.41
-2.855173772 6.253946722 199909 1282.71
Table 11-6 shows a fragment of the normalized testing data set.
Table 11-6. Fragment of the Normalized Testing Data Set
priceDiffPerc targetPriceDiffPerc Date inputPrice
0.722703578 0.723845891 199704 801.34
0.723845891 0.623017557 199705 848.28
0.623017557 0.854305534 199706 885.14
0.854305534 -0.049770689 199707 954.31
-0.049770689 0.687690158 199708 899.47
0.687690158 0.103482251 199709 947.28
0.103482251 0.63057882 199710 914.62
0.63057882 0.438210872 199711 955.4
0.438210872 0.401000931 199712 970.43
0.401000931 0.802995063 199801 980.28
0.802995063 0.666304534 199802 1049.34
0.666304534 0.393843128 199803 1101.75
0.393843128 0.2078255 199804 1111.75
0.2078255 0.596254805 199805 1090.82
0.596254805 0.255897364 199806 1133.84
(continued)

Dy Profl Engr Mr Santosh Kumar

511

CHAPTER 11

Table 11-6. (continued)

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

priceDiffPerc targetPriceDiffPerc Date inputPrice
0.255897364 -0.638644739 199807 1120.67
-0.638644739 0.749303582 199808 957.28
0.749303582 0.868627972 199809 1017.01
0.868627972 0.727506895 199810 1098.67
0.727506895 0.709168722 199811 1163.63
0.709168722 0.606729416 199812 1229.23
0.606729416 0.118116554 199901 1279.64
0.118116554 0.591961217 199902 1238.33
0.591961217 0.586293213 199903 1286.37
0.586293213 0.166863894 199904 1335.18
0.166863894 0.696255556 199905 1301.84
0.696255556 0.119692676 199906 1372.711
0.119692676 0.291639071 199907 1328.72
0.291639071 0.142988415 199908 1320.41
0.142988415 0.750263115 199909 1282.71

Finally, Table 11-7 shows the sliding window testing data set. This is the data set used
to test the trained network.

Table 11-7. Fragment of the Sliding Window Testing Data Set

Sliding Windows
0591 055 017 046 021 02 053 03 057 026 04 022 0.327
055 0165 046 021 02 053 033 06 026 038 02 057 0503
0165 0459 021 02 053 033 057 03 038 022 06 033 0.336
0459 0206 02 053 033 057 026 04 022 057 03 05 0407
(continued)
512

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Table 11-7. (continued)

Sliding Windows

0206 0.199 053 033 057 026 038 02 057 033 05 034 0.414
0199 0533 033 057 026 038 022 06 033 05 03 041 0.127
0533 0332 057 026 038 022 057 03 05 034 04 041 0334
0332 0573 026 038 022 057 033 05 034 041 04 013 0.367
0573 0259 0.38 022 057 033 05 03 041 041 01 033 0475
0259 038 022 057 033 05 034 04 041 013 03 037 0497
038 0215 057 033 05 034 041 04 013 033 04 048 0.543
0215 0568 033 05 034 041 041 01 033 037 05 05 0443
0568 0327 05 034 041 041 013 03 037 048 05 054 0417
0327 0503 034 041 041 013 033 04 048 05 05 044 0427
0.503 0336 041 041 013 033 037 05 05 054 04 042 0188
0336 0407 041 013 033 037 048 05 054 044 04 043 04
0407 0414 013 033 037 048 05 05 044 042 04 019 0622
0414 0127 033 037 048 05 054 04 042 043 02 04 055
0127 0334 037 048 05 054 044 04 043 019 04 062 0215
0334 0367 048 05 054 044 042 04 019 04 06 055 0.12
0367 0475 05 054 044 042 043 02 04 062 06 022 0419
0475 0497 054 044 042 043 0719 04 062 055 02 012 0.572
0497 0543 044 042 043 019 04 06 055 022 0.1 042 0432
0543 0443 042 043 019 04 062 06 022 012 04 057 0.04
0.443 0417 043 019 04 062 055 02 012 042 06 043 0.276
0417 0427 019 04 062 055 022 01 042 057 04 004 -0.074
0427 0188 04 062 055 022 012 04 057 043 0 028 0.102
0.188 0.4 062 055 022 012 042 06 043 004 03 -01 0.294
0.4 0622 055 022 012 042 057 04 004 028 -0 0.1 065
0622 055 022 012 042 057 043 0 028 -0.07 0.1 0.29 0.404

513

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

The sliding window testing data set is broken in micro-batch files. Figure 11-5 shows
a fragment of the list of testing micro-batch files.

%S&mple?_wcrobatdwesjest_&td'l_ooo.csv
Sample7_Microbatches_Test_Batch_001.csv
) sample7_Microbatches_Test_Batch_002.csv
i33)Sample7_Microbatches_Test_Batch_003.csv
@Sample?_hfllcrobatdwes_Test_Batd_OOicsv
ixg] sample7_Microbatches_Test_Batch_005.csv
@S&nplﬂ_Microbatd\es_Test_BatdLOOé.csv
ixg)sample7_Microbatches_Test_Batch_007.csv
§x5)Sample7_Microbatches_Test_Batch_008.csv
iX3)Sample7_Microbatches_Test_Batch_009.csv
i35 Sample7_Microbatches_Test_Batch_010.csv
iX3)sample7_Microbatches_Test_Batch_011.csv
ix5) Sample7_Microbatches_Test_Batch_012.csv
ix5)Sample7_Microbatches_Test_Batch_013.csv
ix3)sample7_Microbatches_Test_Batch_014.csv
ixg] Sample7_Microbatches_Test_Batch_015.csv
i35 sample7_Microbatches_Test_Batch_016.csv
ix5)sample7_Microbatches_Test_Batch_017.csv
ixg]sample7_Microbatches_Test_Batch_018.csv
ixj]sample7_Microbatches_Test_Batch_019.csv
ixi]sample7_Microbatches_Test_Batch_020.csv
ixi]sample7_Microbatches_Test_Batch_021.csv
ixi]sample7_Microbatches_Test_Batch_022.csv
ixg)sample7_Microbatches_Test_Batch_023.csv
i35 sample7_Microbatches_Test_Batch_024.csv
i35 sample7_Microbatches_Test_Batch_025.csv
ixg]sample7_Microbatches_Test_Batch_026.csv
ix{] sample7_Microbatches_Test_Batch_027.csv
ixg] sample7_Microbatches_Test_Batch_028.csv
iX{]sample7_Microbatches_Test_Batch_029.csv
@Sample?_maobatdwes_Test_Batdm_o:io.Gv
4] sample7_Microbatches_Test_Batch_031.csv

Figure 11-5. Fragment of the list of testing micro-batch data sets

Testing Logic

There are many new coding fragments in this method, so let’s discuss them. You
load the micro-batch data set and the corresponding saved network in a loop over
the set of testing micro-batch data sets. Remember, you no longer process a single
testing data set but a set of micro-batch testing data sets. Next, you obtain from the

514

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

network the input, actual, and predicted price values; normalize them; and calculate
the actual and predicted prices. That is done for all test records for which the saved-
network records exist.

However, there is no save-network file for the last micro-batch record in the
test data set, simply because the network was not trained for that point. For this
record you retrieve its 12 inputPriceDiffPerc fields, which are the keys used
during network training. Next, you search the keys of all saved networks files that
are located in the memory arrays called linkToSaveInputPriceDiffPerc_00,
linkToSaveInputPriceDiffPerc_01, and so on.

Because there are 12 keys associated with each saved network, the search is done in
the following way. For a micro-batch to be processed, you calculate the vector value in
the 12D space using Euclidean geometry. For example, for the function of 12 variables
y = f(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12), the vector value is the square root of the sum
of each x value powered to 2 (see 10-1).

VE12 + 1% + %12 + x1% + %12 + x12 +x1°2 + %1% + x12 + x1% + %12 + x1° {11=1)

Then, for each set of network keys held in the 1inkToSaveInputPriceDiffPerc
arrays, the vector value is also calculated. The network keys that closely match the set
of keys from the processed record are selected and loaded into memory. Finally, you
obtain from that network the input, active, and predicted values; denormalize them; and
calculate the actual and predicted values. Listing 11-6 shows the code for this logic.

Listing 11-6. The Logic of Selecting the Saved-Network Record

static public void loadAndTestNetwork()
{

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new Arraylist<Double>();
List<Double> yData2 = new ArraylList<Double>();

int k1 = 0;
int k3 = 0;

BufferedReader br4;
BasicNetwork network;

try

als

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

516

{

// Process testing batches

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

for (ki
{

br4 = new BufferedReader(new FileReader(strTestingFile
Names[k1]));
tempLine = br4.readlLine();

0; k1 < intNumberOfBatchesToProcess; ki++)

// Skip the label record
tempLine = br4.readLine();

// Break the line using comma as separator
tempWorkFields = tempLine.split(cvsSplitBy);

recordNormInputPriceDiffPerc 00 = Double.parseDouble(tempWork

Fields[0]);
recordNormInputPriceDiffPerc 01 = Double.parseDouble(tempWork
Fields[1]);
recordNormInputPriceDiffPerc 02 = Double.parseDouble(tempWork
Fields[2]);
recordNormInputPriceDiffPerc_03 = Double.parseDouble(tempWork
Fields[3]);
recordNormInputPriceDiffPerc 04 = Double.parseDouble(tempWork
Fields[4]);
recordNormInputPriceDiffPerc_05 = Double.parseDouble(tempWork
Fields[5]);
recordNormInputPriceDiffPerc 06 = Double.parseDouble(tempWork
Fields[6]);
recordNormInputPriceDiffPerc 07 = Double.parseDouble(tempWork
Fields[7]);
recordNormInputPriceDiffPerc 08 = Double.parseDouble(tempWork
Fields[8]);

Dy Profl Engr Mr Santosh Kumar

recordNormInputPriceDiffPerc 09

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Double.parseDouble(tempWork

Fields[9]);

recordNormInputPriceDiffPerc 10

Double.parseDouble(tempWork

Fields[10]);

recordNormInputPriceDiffPerc 11

Double.parseDouble(tempWork

Fields[11]);

recordNormTargetPriceDiffPerc = Double.parseDouble(tempWork
Fields[12]);

if(k1 < 120)

{

// Load the network for the current record
network = (BasicNetwork)EncogDirectoryPersistence. loadObject
(newFile(strSaveNetworkFileNames[k1]));

// Load the training file record

MLDataSet testingSet = loadCSV2Memory(strTestingFileNames[k1],
intInputNeuronNumber, intOutputNeuronNumber,true,
CSVFormat.ENGLISH,false);

// Get the results from the loaded previously saved networks
int 1 = - 1; // Index of the array to get results

for (MLDataPair pair: testingSet)

{

i++;

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);
normInputPriceDiffPercFromRecord = inputData.getData(11);

al?

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

// De-normalize this data to show the real result value
denormTargetPriceDiffPerc = ((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normTargetPriceDiffPerc- Nh*target
PriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);
denormPredictPriceDiffPerc =((targetPriceDiffPercDl -
targetPriceDiffPercDh)*noxrmPredictPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/(NL - Nh);

denormInputPriceDiffPercFromRecord = ((inputPriceDiff
PercDl - inputPriceDiffPercDh)*normInputPriceDiffPerc
FromRecord - Nh*inputPriceDiffPercDl + inputPriceDiff
PercDh*N1)/(N1 - Nh);

inputPriceFromFile = arrPrices[ki+12];

// Convert denormPredictPriceDiffPerc and denormTarget
PriceDiffPerc to real renormalized
// price

realDenormTargetPrice = inputPriceFromFile +
inputPriceFromFile*(denormTargetPriceDiffPerc/100);
realDenormPredictPrice = inputPriceFromFile +
inputPriceFromFile*(denormPredictPriceDiffPerc/100);

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenorm
TargetPrice)*100;

System.out.println("Month = " + (k1+1) + " targetPrice
+ realDenormTargetPrice + " predictPrice = " + real
DenormPredictPrice + diff = " + realDenormTarget

ToPredictPricePerc);

"

} // End of the for pair loop

} // End for IF

518

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

else

{

vectorForRecord = Math.sqrt(
Math.pow(recordNormInputPriceDiffPerc 00,2)
Math.pow(recordNormInputPriceDiffPerc 01,2)
Math.pow(recordNormInputPriceDiffPerc 02,2)
Math.pow(recordNormInputPriceDiffPerc 03,2)
Math.pow(recordNoxrmInputPriceDiffPerc 04,2)
Math.pow(recordNormInputPriceDiffPerc 05,2)
Math.pow(recordNormInputPriceDiffPerc 06,2)
Math.pow(recordNormInputPriceDiffPerc 07,2)
Math.pow(recordNormInputPriceDiffPerc 08,2)
Math.pow(recordNormInputPriceDiffPerc _09,2)
Math.pow(recordNormInputPriceDiffPerc 10,2)
Math.pow(recordNormInputPriceDiffPerc 11,2));

+ + + + + + + + + + +

// Look for the network of previous months that closely
match the
// vectorForRecord value

minVectorValue = 999.99;

for (k3 = 0; k3 < intNumberOfSavedNetworks; k3++)
{

r 00 = linkToSaveInputPriceDiffPerc_00[k3

)
r 01 = linkToSaveInputPriceDiffPerc_01[k3];
r_02 = linkToSaveInputPriceDiffPerc_02[k3
r 03 = linkToSaveInputPriceDiffPerc_03[k3
T 04 = linkToSaveInputPriceDiffPerc 04[k3];

[k3]
[k3]
[k3]
[k3]
[k3]
r 05 = linkToSaveInputPriceDiffPerc 05[k3];
[k3]
[k3]
[k3]
[k3]
[k3]
[k3]

)

)

)

r 06 = linkToSaveInputPriceDiffPerc_06[k3
r 07 = linkToSaveInputPriceDiffPerc_07[k3
r 08 = linkToSaveInputPriceDiffPerc 08[k3
r 09 = linkToSaveInputPriceDiffPerc_09[k3
r_10 = linkToSaveInputPriceDiffPerc_10[k3
r 11 = linkToSaveInputPriceDiffPerc_11[k3

)

)

)

)

b

r2 = linkToSaveTargetPriceDiffPerc[k3];
519

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

vectorForNetworkRecord = Math.sqrt(
Math.pow(r_00,2) +

Math.pow(r_01,2) +

Math.pow(r_02,2)
Math.pow(r 03,2)
Math.pow(r 04,2)
Math.pow(r 05,2)
Math.pow(r 06,2)
Math.pow(r 07,2)
Math.pow(r_08,2)
Math.pow(r 09,2)
Math.pow(r_10,2)
Math.pow(r_11,2));

+

+ + + + + + + +

vectorDiff = Math.abs(vectorForRecord - vectorFor
NetworkRecoxrd);

if(vectorDiff < minVectorValue)

{

minVectorValue = vectorDiff;

// Save this network record attributes
rTempKey = r_00;
rTempPriceDiffPerc = r2;
tempMinIndex = k3;
}

} // End FOR k3 loop

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject(newFile
(strSaveNetworkFileNames[tempMinIndex]));

// Now, tempMinIndex points to the corresponding saved network
// Load this network in memory

520

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

MLDataSet testingSet = loadCSV2Memory(strTestingFileNames[k1],
intInputNeuronNumber,intOutputNeuronNumber,true,
(SVFormat.ENGLISH,false);

// Get the results from the loaded network
int 1 = - 1;

for (MLDataPair pair: testingSet)

{

i++;
MLData inputData = pair.getInput();

MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normTargetPriceDiffPerc = actualData.getData(0);
normPredictPriceDiffPerc = predictData.getData(0);
normInputPriceDiffPercFromRecord = inputData.getData(11);

// Renormalize this data to show the real result value
denormTargetPriceDiffPerc = ((targetPriceDiffPercDl -
targetPriceDiffPercDh)*normTargetPriceDiffPerc - Nh*target
PriceDiffPercDl + targetPriceDiffPercDh*N1)/(N1 - Nh);

denormPredictPriceDiffPerc =((targetPriceDiffPercDl -
targetPriceDiffPercDh)* normPredictPriceDiffPerc - Nh*
targetPriceDiffPercDl + targetPriceDiffPercDh*N1)/(NL - Nh);

denormInputPriceDiffPercFromRecord = ((inputPriceDiffPercDl -
inputPriceDiffPercDh)*normInputPriceDiffPercFromRecord -
Nh*inputPriceDiffPercDl + inputPriceDiffPercDh*N1)/(NL - Nh);

inputPriceFromFile = arrPrices[ki+12];

// Convert denormPredictPriceDiffPerc and denormTarget
PriceDiffPerc to a real

521

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11

522

}

THE IMPORTANCE OF SELECTING THE CORRECT MODEL

//renormalized price

realDenormTargetPrice = inputPriceFromFile + inputPrice
FromFile*(denormTargetPriceDiffPerc/100);
realDenormPredictPrice = inputPriceFromFile + inputPrice
FromFile*(denormPredictPriceDiffPerc/100);

realDenormTargetToPredictPricePerc = (Math.abs(realDenorm
TargetPrice - realDenormPredictPrice)/realDenorm
TargetPrice)*100;

System.out.println("Month = " + (ki+1) + " targetPrice =
" + realDenormTargetPrice +

" predictPrice = " + realDenorm

PredictPrice +
PricePerc);

diff = " + realDenormTargetToPredict

if (realDenormTargetToPredictPricePerc > maxGlobal
ResultDiff)
maxGlobalResultDiff = realDenormTargetToPredict
PricePerc;

sumGlobalResultDiff = sumGlobalResultDiff + realDenoxrm
TargetToPredictPricePerc;

} // End of IF
} // End for the pair loop
// Populate chart elements

tempMonth = (double) ki+14;
xData.add(tempMonth) ;
yDatal.add(realDenormTargetPrice);
yData2.add(realDenormPredictPrice);

// End of loop K1

// Print the max and average results

System.out.println(" ");
System.out.println(" ");
System.out.println("Results of processing testing batches");

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

averGlobalResultDiff = sumGlobalResultDiff/intNumberOfBatches
ToProcess;

System.out.println("maxGlobalResultDiff = " + maxGlobalResultDiff +

" i ="+ maxGlobalIndex);
System.out.println("averGlobalResultDiff = " + averGlobalResult
Diff);

System.out.printIn(" ");
System.out.println(" ");

} // End of TRY
catch (IOException e1)

{

el.printStackTrace();

}

// All testing batch files have been processed
XYSeries seriesl = Chart.addSeries("Actual Price", xData, yDatal);
XYSeries series2 = Chart.addSeries("Forecasted Price", xData, yData2);

seriesl.setlineColor(XChartSeriesColors.BLUE);
series2.setMarkerColor(Color.ORANGE);
seriesi.setlineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, strChartFileName,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}
System.out.println ("The Chart has been saved");

} // End of the method

523

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Testing Results

Listing 11-7 shows the fragment log of the testing results.

Listing 11-7. Testing Results

Month = 80 targetPrice
diff = 6.84919E-4
Month = 81 targetPrice
diff = 2.22043E-4
Month = 82 targetPrice
diff = 4.05172E-4
Month = 83 targetPrice
diff = 1.01641E-4
Month = 84 targetPrice
diff = 7.46683E-4
Month = 85 targetPrice
diff = 8.02666E-4
Month = 86 targetPrice
diff = 8.83502E-4
Month = 87 targetPrice
diff = 5.48814E-6
Month = 88 targetPrice
diff = 8.62680E-4
Month = 89 targetPrice
diff = 8.95176E-4
Month = 90 targetPrice
diff = 1.92764E-5
Month = 91 targetPrice
diff = 3.48523E-4
Month = 92 targetPrice
diff = 8.51313E-4
Month = 93 targetPrice
diff = 6.05221E-4
Month = 94 targetPrice
diff = 2.30633E-4

524

I

1211.

1181.

1203.

1180.

1156.

1191.

1191.

1234.

1220

1228.

1207

1249

1248.

1280.

1280 .

91999

26999

60000

59000

84999

49999

32999

17999

.33000

80999

.00999

.48000

28999

08000

66000

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Dy Profl Engr Mr Santosh Kumar

1211.

1181.

1203.

1180.

1156.

1191.

1191.

1234.

1220.

1228.

1207.

1249.

1248.

1280.

1280 .

91169

26737

60487

59119

84136

49043

31947

17993

31947

82099

00976

48435

27937

08774

66295

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Month = 95 targetPrice = 1294.86999 predictPrice = 1294.85904
diff = 8.46250E-4

Month = 96 targetPrice = 1310.60999 predictPrice = 1310.61570
diff = 4.35072E-4

Month = 97 targetPrice = 1270.08999 predictPrice = 1270.08943
diff = 4.41920E-5

Month = 98 targetPrice = 1270.19999 predictPrice = 1270.21071
diff = 8.43473E-4

Month = 99 targetPrice = 1276.65999 predictPrice = 1276.65263
diff = 5.77178E-4

Month = 100 targetPrice = 1303.81999 predictPrice = 1303.82201

diff = 1.54506E-4
Month = 101 targetPrice = 1335.85000 predictPrice = 1335.83897
diff = 8.25569E-4
Month = 102 targetPrice = 1377.93999 predictPrice = 1377.94590
diff = 4.28478E-4
Month = 103 targetPrice = 1400.63000 predictPrice = 1400.62758
diff = 1.72417E-4
Month = 104 targetPrice = 1418.29999 predictPrice = 1418.31083
diff = 7.63732E-4
Month = 105 targetPrice = 1438.23999 predictPrice = 1438.23562
diff = 3.04495E-4
Month = 106 targetPrice = 1406.82000 predictPrice = 1406.83156
diff = 8.21893E-4
Month = 107 targetPrice = 1420.85999 predictPrice = 1420.86256
diff = 1.80566E-4
Month = 108 targetPrice = 1482.36999 predictPrice = 1482.35896
diff = 7.44717E-4
Month = 109 targetPrice = 1530.62000 predictPrice = 1530.62213
diff = 1.39221E-4
Month = 110 targetPrice = 1503.34999 predictPrice = 1503.33884
diff = 7.42204E-4
Month = 111 targetPrice = 1455.27000 predictPrice = 1455.27626
diff = 4.30791E-4

525

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Month = 112 targetPrice
diff = 8.91560E-4
Month = 113 targetPrice
diff = 8.06578E-4
Month = 114 targetPrice
diff = 6.56917E-4
Month = 115 targetPrice
diff = 7.27101E-4
Month = 116 targetPrice
diff = 2.02886E-4
Month = 117 targetPrice
diff = 7.24775E-4
Month = 118 targetPrice
diff = 7.77501E-4
Month = 119 targetPrice
diff = 3.99053E-5
Month = 120 targetPrice
diff = 7.54811E-4
Month = 121 targetPrice
diff = 17.0157E-4

1473.98999

1526.75000

1549.37999

1481.14000

1468.35999

1378.54999

1330.63000

1322.70000

1385.58999

1400.38000

maxErrorPerc = 17.0157819794876
averErrorPerc = 0.14062629735113719

predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice
predictPrice

predictPrice

Figure 11-6 shows the chart of the testing results.

526

Dy Profl Engr Mr Santosh Kumar

1473

1526.

1549.

1481.

1468.

1378.

1330.

1322.

1385.

1162

.97685

76231

39017

15076

35702

55999

61965

69947

60045

.09439

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

Figure 11-6. Testing results chart

Analyzing the Testing Results

At all points where the network was trained, the predicted price closely matches the
actual price (the yellow and blue charts practically overlap). However, at the next month
point (the point where the network was not trained), the predicted price differs from
the actual price (which you happened to know) by more than 17 percent. Even the
direction of the next month’s predicted price (the difference from the previous month)
is wrong. The actual price has slightly increased, while the predicted price has dropped
considerably.

With the prices at these points being at around 1200 to 1300, the 17 percent
difference represents an error of more than 200 points. This cannot be considered a
prediction at all; the result is useless for traders/investors. So, what went wrong? We
did not violate the restriction of predicting function values outside of the training range
(by transforming the price function to be dependent on the price difference between
months instead of sequential months). To answer this question, let’s research the issue.

When you processed the last test record, you obtained the values of its first 12 fields
from the 12 previous original records. They represent the price difference percent
between the current and previous months. And the last field in the record is the percent

527

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

difference between the price value at the next month (record 13) and the price value at
month 12. With all fields being normalized, the record is shown in Equation 11-2.

0.621937887 0.550328191 0.214557935 0.12012062 0.419090615
0.571960009 0.4321489 0.039710508 0.275810074 -0.074423166 (11-2)
0.101592253 0.29360278 0.404494355

By knowing the price for micro-batch record 12 (which is 1385.95) and obtaining the
network prediction as the targetPriceDiffPerc field (which is the percent difference
between the next month and current month prices), you can calculate the next month’s
predicted price as shown in Equation 11-3.

nextMonthPredictedPrice =record12ActualPrice +
recordl2ActualPrice ‘predictedPriceDiffPerc /100.00 (11-3)

To get the network prediction for record 13 (predictedPriceDiffPerc), you feed
the trained network the vector value of 12 inputPriceDiffPexc fields from the currently
processed record (see 10-2). The network returns -16.129995719. Putting it all together,
you receive the predicted price for the next month.

1385.59-1385.59716.12999/100.00 =1,162.0943923170353

The predicted price for the next month is equal to 1,162.09, while the actual price
is 1,400.38, with a difference of 17.02 percent. That’s exactly the result shown in the
processing log for the last record.

Month =121 targetPrice =1400.3800000016674
predictPrice =1162.0943923170353 diff =17.0157819794876

The calculated result for the next month'’s price is mathematically correct and is
based on the sum of the price at the last training point and the price difference percent
between the next and current points returned by the network.

The problem is that the historical stock market prices don’t repeat themselves under
the same or similar conditions. The price difference percent that the network returns for
the calculated vector (10.1) of the last processed record is not correct for calculating the

528

Dy Profl Engr Mr Santosh Kumar

CHAPTER 11 THE IMPORTANCE OF SELECTING THE CORRECT MODEL

predicted price for the next month. It is a problem with the model that you used in this
example, which assumes that the price difference percent for the future month is similar
to the price difference percent recorded for a same or close condition in the past.

This is an important lesson to learn. If the model is wrong, nothing will work. Before
doing any neural network development, you need to prove that the chosen model works
correctly. This will save you a lot of time and effort.

Some processes are random and unpredictable by definition. If the stock market
became predictable, it would simply cease to exist because its premise is based on a
difference of opinions. If everyone knew the future market’s direction, all investors
would be selling, and no one would be buying.

Summary

The chapter explained the importance of selecting the correct working model for the
project. You should prove that the model works correctly for your project before starting
any development. Failure to select the correct model will leave you with an incorrectly
working application. The network will also produce the wrong results when it is used to
predict the results of all sort of games (gambling, sports, and so on).

529

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12

Approximation of
Functions in 3D Space

This chapter discusses how to approximate functions in 3D space. Such function values
depend on two variables (instead of one variable, which was discussed in the preceding
chapters). Everything discussed in this chapter is also correct for functions that depend
on more than two variables. Figure 12-1 shows the chart of the 3D function considered in
this chapter.

Figure 12-1. Chart of the function in 3D space

531
© Igor Livshin 2019

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0_12

D¥ Piold Ellr:;r f Saniosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Example 8: Approximation of Functions in 3D Space

The function formula is z(x, y) = 50.00 + sin(x*y), but again, let’s pretend that the function
formula is unknown and that the function is given to you by its values at certain points.

Data Preparation

The function values are given on the interval [3.00, 4.00] with the increment value 0.02
for both function arguments x and y. The starting point for the training data set is 3.00,
and the starting point for the testing data set is 3.01. The increment for x and y values is
0.02. The training data set records consist of three fields.

The record structure of the training data set is as follows:

Field 1: The value of the x argument
Field 2: The value of the y argument
Field 3: The function value
Table 12-1 shows a fragment of the training data set. The training data set includes

records for all possible combinations of x and y values.

Table 12-1. Fragment of the Training Data Set

X y z
3 3 50.41211849
3 3.02 50.35674187
3 3.04 50.30008138
3 3.06 50.24234091
3 3.08 50.18372828
3 3.1 50.12445442
3 312 50.06473267
3 3.14 50.00477794
3 3.16 49.94480602

(continued)

532

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Table 12-1. (continued)

X y z
3 318 49.88503274
3 3.2 49.82567322
3 3.22 49.76694108
3 3.24 49.70904771
3 3.26 49.65220145
3 3.28 49.59660689
3 3.3 49.54246411
3 3.32 49.48996796
3 3.34 49.43930738
3 3.36 49.39066468
3 3.38 49.34421494
3 3.4 49.30012531
3 3.42 49.25855448
3 3.44 49.21965205
3 3.46 49.18355803
3 3.48 49.15040232
3 3.5 49.12030424
3 3.52 49.09337212
3 3.54 49.06970288
3 3.56 49.0493817
3 3.58 49.03248173
3 3.6 49.01906377
3 3.62 49.00917613
3 3.64 49.00285438
3 3.66 49.00012128
(continued)

533

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

534

Table 12-1. (continued)

X y z

3 3.68 49.00098666
3 < ¥ 49.00544741
3 3.72 49.01348748
3 3.74 49.02507793
3 3.76 49.04017704
3 3.78 49.05873048
3 3.8 49.08067147
3 3.82 49.10592106
3 3.84 4913438836
3 3.86 49.16597093
3 3.88 49.2005551
3 3.9 49.23801642
3 3.92 49.27822005
3 3.94 49.3210213
3 3.96 49.36626615
3 3.98 49.41379176
3 4 49.46342708
3.02 3 50.35674187
3.02 3.02 50.29969979
3.02 3.04 50.24156468
3.02 3.06 50.18254857
3.02 3.08 50.1228667
3.02 3.1 50.06273673
3.02 3.12 50.00237796

(continued)

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Table 12-1. (continued)

X y z

3.02 3.14 49.94201051
3.02 3.16 49.88185455
3.02 3.18 49.82212948
3.02 3.2 49.76305311

Table 12-2 shows the fragment of the testing data set. It has the same structure,
but it includes the x and y points not used for the network training. Table 12-2 shows a
fragment of the testing data set.

Table 12-2. Fragment of the Testing Data Set

X y z

3.01 3.01 50.35664845
3.01 3.03 50.29979519
3.01 3.05 50.24185578
3.01 3.07 50.18304015
3.01 3.09 50.12356137
3.01 3.11 50.06363494
3.01 3.13 50.00347795
3.01 3.15 49.94330837
3.01 3.17 49.88334418
3.01 319 49.82380263
3.01 3.21 49.76489943
3.01 3.23 49.70684798
3.01 3.25 49.64985862
3.01 3.27 49.59413779

(continued)

535

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

536

Table 12-2. (continued)

X y z

3.01 3.29 49.53988738
3.01 3.31 49.48730393
3.01 333 49.43657796
3.01 3.35 49.38789323
3.01 3.37 49.34142613
3.01 3.39 49.29734501
3.01 3.41 49.25580956
3.01 3.43 49.21697029
3.01 3.45 49.18096788
3.01 3.47 49.14793278
3.01 3.49 49.11798468
3.01 3.51 49.09123207
3.01 353 49.06777188
3.01 3.55 49.04768909
3.01 3.57 49.03105648
3.01 3.59 49.0179343
3.01 3.61 49.00837009
3.01 3.63 49.0023985
3.01 3.65 49.00004117
3.01 3.67 49.00130663
3.01 3.69 49.00619031
3.01 3.71 49.0146745
3.01 3.73 49.02672848
3.01 375 49.04230856

(continued)

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Table 12-2. (continued)

X y 4
3.01 3.77 49.06135831
3.01 3.79 49.08380871
3.01 3.81 49.10957841
3.01 3.83 49.13857407
3.01 3.85 49.17069063
3.01 3.87 49.20581173
3.01 3.89 49.24381013
3.01 3.91 49.28454816
3.01 3.93 49.32787824
3.01 3.95 49.37364338
3.01 3.97 49.42167777
3.01 3.99 49.47180739
3.03 3.01 50.29979519
3.03 3.03 50.24146764
3.03 3.05 50.18225361
Network Architecture

Figure 12-2 shows the network architecture. The function you'll process has two inputs
(x and y); therefore, the network architecture has two inputs.

537

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Input
Layer

Output

Hidden Layers Layer

() '

\\\'lln A.\\\\'{%Ak {{A.\\\}'l

0 3077
\- \) \v \)
‘ NNPEL ‘
/ Qa\‘*" i ‘:‘ S".?/; a\“* "2,',, : e
\tl 'v t* ’4 v '4(»v
7 S S e S
3 73 .oO ORTRALIAS S ERTRARLR LA ’0.
‘\’“ st Sl Lol LS ::
\‘ ZEBORRN ’,1: ‘;; ‘; ::S &‘o’:ﬁ&&i& CRAORRY
“”),/ \.\‘),/ LA)a /‘\ \‘\“ ’/ > \.\\
//!; &‘ ' ,,'7 S ' (& '9%«

Figure 12-2. Network architecture

Both the training and testing data sets are normalized before being processed. You
will approximate the function using the conventional network process. Based on the
processing results, you will then decide whether you need to use the micro-batch method.

Program Code

Listing 12-1 shows the program code.

Listing 12-1. Program Code

// Approximation of the 3-D Function using conventional process.
// The input file is normalized.
// e T

package sample9;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileInputStream;
import java.io.PrintWriter;

538

Dy Profl Engr Mr Santosh Kumar

import java.
import java.
import java.
import java.
import java.

import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java
import java

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

CHAPTER 12

io.FileNotFoundException;
io.FileReader;
io.FileWriter;
io.IOException;
io.InputStream;

.nio.file.*;

.util
time

.Properties;
.YearMonth;

.awt.Color;
.awt.Font;
.io0.BufferedReader;

.text

«text.
.text.
.time.
.time.
.time.

util

.util.
Jitil,
.util.
.util.
JutiL

encog

.DateFormat;
ParseException;
SimpleDateFormat;
LocalDate;
Month;

Zoneld;
.Arraylist;
Calendar;

Date;

List;

Locale;
Properties;

.Encog;

APPROXIMATION OF FUNCTIONS IN 3D SPACE

encog.engine.network.activation.ActivationTANH;

encog.engine.network.activation.ActivationRelU;

encog
encog
encog
encog
encog
encog

.ml.data.MLData;
.ml.data.MLDataPair;
.ml.data.MLDataSet;

.ml.data.buffer.MemoryDataloader;
.ml.data.buffer.codec.CSVDataCODEC;
.ml.data.buffer.codec.DataSetCODEC;
encog.neural.networks.BasicNetwork;
encog.neural.networks.layers.Basiclayer;

539

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

import org.encog.neural.networks.training.propagation.resilient.
ResilientPropagation;

import org.encog.persist.EncogDirectoryPersistence;

import org.encog.util.csv.CSVFormat;

import org.knowm.xchart.SwingWrapper;

import org.knowm.xchart.XYChart;

import org.knowm.xchart.XYChartBuilder;

import org.knowm.xchart.XYSeries;

import org.knowm.xchart.demo.charts.ExampleChart;
import org.knowm.xchart.style.Styler.LegendPosition;
import org.knowm.xchart.style.colors.ChartColor;
import org.knowm.xchart.style.colors.XChartSeriesColors;
import org.knowm.xchart.style.lines.SerieslLines;
import org.knowm.xchart.style.markers.SeriesMarkers;
import org.knowm.xchart.BitmapEncoder;

import org.knowm.xchart.BitmapEncoder.BitmapFormat;
import org.knowm.xchart.QuickChart;

import org.knowm.xchart.SwingWrapper;

public class Sample9 implements ExampleChart<XYChart>
{

// Interval to normalize
static double Nh = 1;
static double N1 = -1;

// First column

static double minXPointDl = 2.00;
static double maxXPointDh = 6.00;
// Second column

static double minYPointDl = 2.00;
static double maxYPointDh = 6.00;

// Third column - target data
static double minTargetValueDl
static double maxTargetValueDh

45.00;
55.00;

540

Dy Profl Engr Mr Santosh Kumar

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

double doublePointNumber = 0.00;
int intPointNumber = 0;
InputStream input = null;

double[] arrPrices = new double[2700];
double normInputXPointValue = 0.00;
double normInputYPointValue = 0.00;

double normPredictValue = 0.00;
double normTargetValue = 0.00;
double normDifferencePerc = 0.00;

double returnCode = 0.00;
double denormInputXPointValue = 0.00;
double denormInputYPointValue = 0.00;

double denormPredictValue = 0.00;
double denormTargetValue = 0.00;
double valueDifference = 0.00;
int numberOfInputNeurons;

int numberOfOutputNeurons;

static int intNumberOfRecordsInTestFile;

static
static
static
static
static
static
static
static
static

static

static
static
static

static

String trainFileName;
String priceFileName;
String testFileName;

String chartTrainFileName;
String chartTrainFileNameY;
String chartTestFileName;
String networkFileName;

int workingMode;

non

String cvsSplitBy = ",";
int numberOfInputRecords = 0;

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

"

XYChart Chart;

@Override

Dy Profl Engr Mr Santosh Kumar

541

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

public XYChart getChart()

542

// Create Chart

Chart = new XYChartBuilder().width(900).height(500).title(getClass().
getSimpleName()).xAxisTitle("x").yAxisTitle("y= f(x)").build();

// Customize Chart
//Chart = new XYChartBuilder().width(900).height(500).title(getClass().
// getSimpleName()).xAxisTitle("y").yAxisTitle("z= f(y)").build();

//Chart = new XYChartBuilder().width(900).height(500).title(getClass().
// getSimpleName()).xAxisTitle("y").yAxisTitle("z= f(y)").build();

// Customize Chart
Chart.getStyler().setPlotBackgroundColor(ChartColor.

getAWTColor (ChartColor.GREY));
Chart.getStyler().setPlotGridLinesColor(new Color(255, 255, 255));

//Chart.getStyler().setPlotBackgroundColoxr(ChartColox.

getAWTColor (ChartColoxr.WHITE));
//Chart.getStyler().setPlotGridLinesColor(new Coloxr(0, 0, 0));
Chart.getStyler().setChartBackgroundColor(Color.WHITE);
//Chart.getStyler().setLegendBackgroundColor(Color.PINK);
Chart.getStyler().setlLegendBackgroundColor(Color.WHITE);
//Chart.getStyler().setChartFontColor(Color.MAGENTA);
Chart.getStyler().setChartFontColor(Color.BLACK);
Chart.getStyler().setChartTitleBoxBackgroundColor(new Color(0, 222, 0));
Chart.getStyler().setChartTitleBoxVisible(true);
Chart.getStyler().setChartTitleBoxBorderColor(Color.BLACK);
Chart.getStyler().setPlotGridLinesVisible(true);
Chart.getStyler().setAxisTickPadding(20);
Chart.getStyler().setAxisTickMarkLength(15);
Chart.getStyler().setPlotMargin(20);
Chart.getStyler().setChartTitleVisible(false);
Chart.getStyler().setChartTitleFont(new Font(Font.MONOSPACED, Font.
BOLD, 24));

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Chart.getStyler().setLegendFont(new Font(Font.SERIF, Font.PLAIN, 18));
Chart.getStyler().setLegendPosition(LegendPosition.OutsideS);
Chart.getStyler().setLegendSeriesLinelLength(12);
Chart.getStyler().setAxisTitleFont(new Font(Font.SANS SERIF, Font.
ITALIC, 18));

Chart.getStyler().setAxisTickLabelsFont(new Font(Font.SERIF, Font.
PLAIN, 11));

Chart.getStyler().setDatePattexrn("yyyy-MM");
Chart.getStyler().setDecimalPattern("#0.00");

try
{

// Common part of config data

networkFileName =
"C:/My_Neural Network Book/Book Examples/Sample9 Saved Network
File.csv";

numberOfInputNeurons = 2;

numberOfOutputNeurons = 1;

if(workingMode == 1)
{
// Training mode
numberOfInputRecords = 2602;
trainFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Calculate_Train_Norm.csv";
chartTrainFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Chart X Training Results.csv";
chartTrainFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Chart Y Training Results.csv";

File file1
File file2

new File(chartTrainFileName);
new File(networkFileName);

1]

if(filel.exists())
filei.delete();

543

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

if(file2.exists())
file2.delete();

returnCode = 0; // Clear the error Code

do
{

returnCode = trainValidateSaveNetwork();
} while (returnCode > 0);

}
else
{
// Testing mode
numberOfInputRecords = 2602;
testFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Calculate Test Norm.csv";
chartTestFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Chart X Testing Results.csv";
chartTestFileName = "C:/My Neural Network Book/Book Examples/
Sample9 Chart Y Testing Results.csv";
loadAndTestNetwork();
}
}
catch (Throwable t)
{
t.printStackTrace();
System.exit(1);
}
finally
{
Encog.getInstance().shutdown();
}

544

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE
Encog.getInstance().shutdown();

return Chart;

} // End of the method

// Load CSV to memory.
// @return The loaded dataset.
/! ===========s===ss=====ss=ssssSSSSSSSSSSSSSSSSSSSSSSSSSs
public static MLDataSet loadCSV2Memory(String filename, int input,
int ideal, boolean headers,
CSVFormat format, boolean significance)

DataSetCODEC codec = new CSVDataCODEC(new File(filename), format,
headers, input, ideal, significance);

MemoryDataloader load = new MemoryDataloader(codec);

MLDataSet dataset = load.external2Memory();

return dataset;

// The main method.

// @param Command line arguments. No arguments are used.
/! =====================s====ssssssssssssssssssssssssssEs
public static void main(String[] args)

{
ExampleChart<XYChart> exampleChart = new Sample9();

XYChart Chart = exampleChart.getChart();
new SwingWrapper<XYChart>(Chart).displayChart();
} // End of the main method

545

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

546

static public double trainValidateSaveNetwork()
{
// Load the training CSV file in memory
MLDataSet trainingSet = loadCSV2Memory(trainFileName,
numbexOfInputNeurons, numberOfOutputNeurons,
true,CSVFormat.ENGLISH, false);

// create a neural network
BasicNetwork network = new BasicNetwork();

// Input layer
network.addLayer(new Basiclayer(null,true,numberOfInputNeurons));

// Hidden layer

network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasicLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));
network.addLayer(new BasiclLayer(new ActivationTANH(),true,7));

// Output layer
network.addLayer(new BasiclLayer(new ActivationTANH(),false,1));

network.getStructure().finalizeStructure();
network.reset();

// train the neural network
final ResilientPropagation train = new ResilientPropagation(network,
trainingSet);

int epoch = 1;

do
{

train.iteration();
System.out.println("Epoch #" + epoch +

Error:" + train.getError());

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE
epoch++;

if (epoch >= 11000 && network.calculateError(trainingSet) >
0.00000091) // 0.00000371

{

returnCode = 1;

System.out.println("Try again");
return returnCode;

}

} while(train.getError() > 0.0000009); // 0.0000037

// Save the network file
EncogDirectoryPersistence.saveObject(new File(networkFileName),network);

System.out.println("Neural Network Results:");

double sumNormDifferencePerc = 0.00;
double averNormDifferencePexc = 0.00;
double maxNormDifferencePerc = 0.00;

int m = 0; // Record number in the input file
double xPointer = 0.00;

for(MLDataPair pair: trainingSet)

{
m++;
xPointer++;
//if(m == 0)

// continue;
final MLData output = network.compute(pair.getInput());

MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// Calculate and print the results

547

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

548

normInputXPointValue = inputData.getData(0);
normInputYPointValue = inputData.getData(1);
normTargetValue = actualData.getData(0);
normPredictValue = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*normInpu
tXPointValue -
Nh*minXPointDl + maxXPointDh *N1)/(N1 - Nh);

denormInputYPointValue = ((minYPointDl - maxYPointDh)*normInpu
tYPointValue -
Nh*minYPointDl + maxYPointDh *N1)/(N1 - Nh);

denormTargetValue =((minTargetValueDl - maxTargetValueDh)*
normTargetValue -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

denormPredictValue =((minTargetValueDl - maxTargetValueDh)*
normPredictValue -
Nh*minTargetValueDl + maxTargetValueDh*N1)/(N1 - Nh);

valueDifference =
Math.abs(((denormTargetValue - denormPredictValue)/
denormTargetValue)*100.00);

System.out.println ("xPoint = " + denormInputXPointValue +

" yPoint = " +
denormInputYPointValue + " denormTargetValue = " +
denormTargetValue + " denormPredictValue = " +
denormPredictValue + " valueDifference = " +
valueDifference);
//System.out.println("intPointNumber = " + intPointNumber);

sumNoxrmDifferencePerc = sumNormDifferencePerc + valueDifference;

if (valueDifference > maxNormDifferencePerc)
maxNormDifferencePerc = valueDifference;

xData.add(denormInputYPointValue);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

//xData.add(denormInputYPointValue);
yData1.add(denormTargetValue);
yData2.add(denormPredictValue);

} // End for pair loop

Chart.addSeries("Actual data", xData, yDatail);
Chart.addSeries("Predict data", xData, yData2);

XYSeries seriesil
XYSeries series2

seriesi.setlLineColor(XChartSeriesColors.BLACK);
series2.setlLineColor(XChartSeriesColors.LIGHT GREY);

seriesi.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlineStyle(SeriesLines.SOLID);

try
{

//Save the chart image
//BitmapEncoder.saveBitmapWithDPI(Chart, chartTrainFileName,

// BitmapFormat.JPG, 100);

BitmapEncoder.saveBitmapWithDPI(Chart,chartTrainFileName,BitmapF
ormat.JPG, 100);

System.out.println ("Train Chart file has been saved") ;

}
catch (IOException ex)

{

ex.printStackTrace();
System.exit(3);
}

// Finally, save this trained network
EncogDirectoryPersistence.saveObject(new File(networkFileName),net

work);
System.out.println ("Train Network has been saved") ;

averNormDifferencePerc = sumNoxmDifferencePerc/numberOfInputRecords;

549

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

System.out.println(" ");
System.out.println("maxErrorPerc = " + maxNormDifferencePerc +
averkErrorPerc = " + averNormDifferencePerc);

returnCode = 0.00;
return returnCode;

} // End of the method

static public void loadAndTestNetwork()
{

System.out.println("Testing the networks results");

List<Double> xData = new ArraylList<Double>();
List<Double> yDatal = new ArraylList<Double>();
List<Double> yData2 = new ArraylList<Double>();

double targetToPredictPercent = 0;
double maxGlobalResultDiff = 0.00;
double averGlobalResultDiff = 0.00;
double sumGlobalResultDiff = 0.00;
double maxGlobalIndex = 0;

double normInputXPointValueFromRecord
double normInputYPointValueFromRecord

0.00;
0.00;

double normTargetValueFromRecord = 0.00;
double normPredictValueFromRecord = 0.00;

BasicNetwork network;

maxGlobalResultDiff = 0.00;
averGlobalResultDiff = 0.00;
sumGlobalResultDiff = 0.00;

// Load the test dataset into memory
MLDataSet testingSet =

550

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

loadCSV2Memory(testFileName, numberOfInputNeurons,numberOfOutputNeurons
,true,
CSVFormat.ENGLISH,false);

// Load the saved trained network

network =
(BasicNetwork)EncogDirectoryPersistence.loadObject (new
File(networkFileName));

int i = - 1; // Index of the current record
double xPoint = -0.00;

for (MLDataPair pair: testingSet)
{
i++;
xPoint = xPoint + 2.00;
MLData inputData = pair.getInput();
MLData actualData = pair.getIdeal();
MLData predictData = network.compute(inputData);

// These values are Normalized as the whole input is
normInputXPointValueFromRecord = inputData.getData(0);
normInputYPointValueFromRecord = inputData.getData(1);
normTargetValueFromRecord = actualData.getData(0);
normPredictValueFromRecord = predictData.getData(0);

denormInputXPointValue = ((minXPointDl - maxXPointDh)*
normInputXPointValueFromRecord - Nh*minXPointDl +
maxXPointDh*N1)/(N1 - Nh);

denormInputYPointValue = ((minYPointDl - maxYPointDh)*
normInputYPointValueFromRecord - Nh*minYPointDl +
maxYPointDh*N1)/(N1 - Nh);

denormTargetValue = ((minTargetValueDl - maxTargetValueDh)*
normTargetValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

denormPredictValue =((minTargetValueDl - maxTargetValueDh)*

551

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

552

normPredictValueFromRecord - Nh*minTargetValueDl +
maxTargetValueDh*N1)/(N1 - Nh);

targetToPredictPercent = Math.abs((denormTargetValue -
denormPredictValue)/

denormTargetValue*100);

System.out.println("xPoint =
yPoint = " +

+ denormInputXPointValue +

denormInputYPointValue + TargetValue = " +
denormTargetValue + " PredictValue = " +
denormPredictValue + " DiffPerc = " +

targetToPredictPercent);

if (targetToPredictPercent > maxGlobalResultDiff)
maxGlobalResultDiff = targetToPredictPercent;

sumGlobalResultDiff = sumGlobalResultDiff + targetToPredictPercent;

// Populate chart elements
xData.add(denormInputXPointValue);
yDatal.add(denormTargetValue);
yData2.add(denormPredictValue);

} // End for pair loop

// Print the max and average results
System.out.println(" ");
averGlobalResultDiff = sumGlobalResultDiff/numberOfInputRecords;

System.out.println("maxExrrorPerc = " + maxGlobalResultDiff);
System.out.println("averErrorPerc = " + averGlobalResultDiff);

// All testing batch files have been processed
XYSeries seriesi = Chart.addSeries("Actual data", xData, yData1);
XYSeries series2 = Chart.addSeries("Predict data", xData, yData2);

seriesi.setlineColor(XChartSeriesColors.BLACK);
series2.setlineColor(XChartSeriesColors.LIGHT GREY);

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

seriesi.setMarkerColor(Color.BLACK);
series2.setMarkerColor(Color.WHITE);
seriesi.setlLineStyle(SeriesLines.SOLID);
series2.setlLineStyle(SeriesLines.SOLID);

// Save the chart image
try

{
BitmapEncoder.saveBitmapWithDPI(Chart, chartTestFileName ,

BitmapFormat.JPG, 100);

}
catch (Exception bt)

{
bt.printStackTrace();

}

System.out.println ("The Chart has been saved");
System.out.println("End of testing for test records");

} // End of the method

} // End of the class

Processing Results

Listing 12-2 shows the end fragment of the training processing results.

Listing 12-2. End Fragment of the Training Processing Results

xPoint = 4.0 yPoint = 3.3 TargetValue = 50.59207
PredictedValue = 50.58836 DiffPerc = 0.00733
xPoint = 4.0 yPoint = 3.32 TargetValue = 50.65458
PredictedValue = 50.65049 DiffPerc = 0.00806
xPoint = 4.0 yPoint = 3.34 TargetValue = 50.71290
PredictedValue = 50.70897 DiffPerc = 0.00775
xPoint = 4.0 yPoint = 3.36 TargetValue = 50.76666
PredictedValue = 50.76331 DiffPerc = 0.00659

553

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

xPoint = 4.0 yPoint = 3.38 TargetValue = 50.81552
PredictedValue = 50.81303 DiffPerc = 0.00488

xPoint = 4.0 yPoint = 3.4 TargetValue = 50.85916
PredictedValue = 50.85764 DiffPerc = 0.00298

xPoint = 4.0 yPoint = 3.42 TargetValue = 50.89730
PredictedValue = 50.89665 DiffPerc = 0.00128

xPoint = 4.0 yPoint = 3.44 TargetValue = 50.92971
PredictedvValue = 50.92964 DiffPerc = 1.31461

xPoint = 4.0 yPoint = 3.46 TargetValue = 50.95616
PredictedValue = 50.95626 DiffPerc = 1.79849

xPoint = 4.0 yPoint = 3.48 TargetValue = 50.97651
PredictedValue = 50.97624 DiffPerc = 5.15406

xPoint = 4.0 yPoint = 3.5 TargetValue = 50.99060
PredictedValue = 50.98946 DiffPerc = 0.00224

xPoint = 4.0 yPoint = 3.52 TargetValue = 50.99836
PredictedValue = 50.99587 DiffPerc = 0.00488

xPoint = 4.0 yPoint = 3.54 TargetValue = 50.99973
Predictedvalue = 50.99556 DiffPerc = 0.00818

xPoint = 4.0 yPoint = 3.56 TargetValue = 50.99471
PredictedValue = 50.98869 DiffPerc = 0.01181

xPoint = 4.0 yPoint = 3.58 TargetValue = 50.98333
PredictedValue = 50.97548 DiffPerc = 0.01538

xPoint = 4.0 yPoint = 3.6 TargetValue = 50.96565
PredictedValue = 50.95619 DiffPerc = 0.01856

xPoint = 4.0 yPoint = 3.62 TargetValue = 50.94180
PredictedValue = 50.93108 DiffPerc = 0.02104

xPoint = 4.0 yPoint = 3.64 TargetValue = 50.91193
PredictedValue = 50.90038 DiffPerc = 0.02268

xPoint = 4.0 yPoint = 3.66 TargetValue = 50.87622
PredictedValue = 50.86429 DiffPerc = 0.02344

xPoint = 4.0 yPoint = 3.68 TargetValue = 50.83490
PredictedValue = 50.82299 DiffPerc = 0.02342

xPoint = 4.0 yPoint = 3.7 TargetValue = 50.78825
PredictedValue = 50.77664 DiffPerc = 0.02286

554

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

xPoint = 4.0 yPoint = 3.72 TargetValue = 50.73655
PredictedValue = 50.72537 DiffPerc = 0.02203
xPoint = 4.0 yPoint = 3.74 TargetValue = 50.68014
PredictedValue = 50.66938 DiffPerc = 0.02124
xPoint = 4.0 yPoint = 3.76 TargetValue = 50.61938
PredictedValue = 50.60888 DiffPerc = 0.02074
xPoint = 4.0 yPoint = 3.78 TargetValue = 50.55466
PredictedValue = 50.54420 DiffPerc = 0.02069
xPoint = 4.0 yPoint = 3.8 TargetValue = 50.48639
PredictedvValue = 50.47576 DiffPerc = 0.02106
xPoint = 4.0 yPoint = 3.82 TargetValue = 50.41501
PredictedValue = 50.40407 DiffPerc = 0.02170
xPoint = 4.0 yPoint = 3.84 TargetValue = 50.34098
PredictedValue = 50.32979 DiffPerc = 0.02222
xPoint = 4.0 yPoint = 3.86 TargetValue = 50.26476
PredictedValue = 50.25363 DiffPerc = 0.02215
xPoint = 4.0 yPoint = 3.88 TargetValue = 50.18685
PredictedValue = 50.17637 DiffPerc = 0.02088
xPoint = 4.0 yPoint = 3.9 TargetValue = 50.10775
PredictedValue = 50.09883 DiffPerc = 0.01780
xPoint = 4.0 yPoint = 3.92 TargetValue = 50.02795
PredictedValue = 50.02177 DiffPerc = 0.01236
xPoint = 4.0 yPoint = 3.94 TargetValue = 49.94798
PredictedValue = 49.94594 DiffPerc = 0.00409
xPoint = 4.0 yPoint = 3.96 TargetValue = 49.86834
PredictedValue = 49.87197 DiffPerc = 0.00727
xPoint = 4.0 yPoint = 3.98 TargetValue = 49.78954
PredictedvValue = 49.80041 DiffPerc = 0.02182
xPoint = 4.0 yPoint = 4.0 TargetValue = 49.71209
PredictedValue = 49.73170 DiffPerc = 0.03944

maxErrorPerc = 0.03944085774812906
averErrorPerc = 0.00738084715672128

I won’t be displaying the chart of the training results here because drawing two
crossing 3D charts gets messy. Instead, I will project all the target and predicted values

555

Dy Profl Engr Mr Santosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

from the chart on a single panel so they can be easily compared. Figure 12-3 shows the
chart with the projection of function values on a single panel.

Figure 12-3. Projection of the function values on a single panel

556

O Prof Erlr:;r M Saniosh Kurmar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Figure 12-4 shows the projection chart of the training results.

5100 —
50.80 — 3 ; FEEZX iﬁﬁ::;-g <::.“
50.60 — : 2
50.40 — - E £
= 020 o < 3
= s0.00 '
. 49.80 — £ .:.:;. -
49.60 — '": 3 33 - & 4
o FEFIEEREES EEETEDR $g22: 1:" $333
. FLLEREILLLI LI L R ETTT i T
I I I I | | | [I I I
3.00 310 3.20 3.30 340 3.50 3.60 3.70 3.80 3.90 4.00
X
* Actual data
Predict data
Figure 12-4. Projection chart of the training results
Listing 12-3 shows the testing results.
Listing 12-3. Testing Results
xPoint = 3.99900 yPoint = 3.13900 TargetValue = 49.98649
PredictValue = 49.98797 DiffPerc = 0.00296
xPoint = 3.99900 yPoint = 3.15900 TargetValue = 50.06642
PredictValue = 50.06756 DiffPerc = 0.00227
xPoint = 3.99900 yPoint = 3.17900 TargetValue = 50.14592
PredictValue = 50.14716 DiffPerc = 0.00246
xPoint = 3.99900 yPoint = 3.19900 TargetValue = 50.22450
PredictValue = 50.22617 DiffPerc = 0.00333
xPoint = 3.99900 yPoint = 3.21900 TargetValue = 50.30163
PredictValue = 50.30396 DiffPerc = 0.00462
xPoint = 3.99900 yPoint = 3.23900 TargetValue = 50.37684
PredictValue = 50.37989 DiffPerc = 0.00605
557

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

xPoint = 3.99900 yPoint = 3.25900
PredictValue = 50.45333 DiffPerc
xPoint = 3.99900 yPoint = 3.27900
PredictValue = 50.52367 DiffPerc
xPoint = 3.99900 yPoint = 3.29900

PredictValue 50.59037 DiffPerc = 0.

xPoint = 3.99900 yPoint = 3.31900

PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.
xPoint = 3.99900
PredictValue = 50.

558

65291
yPoint
71089
yPoint
76392
yPoint
81175
yPoint
85415
yPoint
89098
yPoint
92213
yPoint
94754
yPoint
96719
yPoint
98104
yPoint
98907
yPoint
99128
yPoint
98762
yPoint
97806

DiffPerc
= 3.33900
DiffPerc
= 3.35900
DiffPerc
= 3.37900
DiffPerc
= 3.39900
DiffPexc
= 3.41900
DiffPerc
= 3.43900
DiffPexc
= 3.45900
DiffPerc
= 3.47900
DiffPerc
= 3.49900
DiffPerc
= 3.51900
DiffPexc
= 3.53900
DiffPexc
= 3.55900
DiffPerc
= 3.57900
DiffPerc

TargetValue
0.00730
TargetValue
0.00812
TargetValue
00829
TargetValue
0.00767
TargetValue
0.00621
TargetValue
0.00396
TargetValue
0.00103
TargetValue
0.00235
TargetValue
0.00594
TargetValue
0.00945
TargetValue
0.01258
TargetValue
0.01507
TargetValue
0.01669
TargetValue
0.01731
TargetValue
0.01686
TargetValue
0.01537
TargetValue
0.01297

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

Dy Profl Engr Mr Santosh Kumar

44964

51957

58617

64903

70773

76191

81122

85535

89400

92694

95395

97487

98955

99790

99988

99546

98468

xPoint = 3.99900 yPoint
PredictValue = 50.96257
xPoint = 3.99900 yPoint
PredictValue = 50.94111
xPoint = 3.99900 yPoint
PredictValue = 50.91368
xPoint = 3.99900 yPoint
PredictValue = 50.88029
xPoint = 3.99900 yPoint
PredictValue = 50.84103
xPoint = 3.99900 yPoint
PredictValue = 50.79602
xPoint = 3.99900 yPoint
PredictValue = 50.74548
xPoint = 3.99900 yPoint
PredictValue = 50.68971
xPoint = 3.99900 yPoint
PredictValue = 50.62910
xPoint = 3.99900 yPoint
PredictValue = 50.56409
xPoint = 3.99900 yPoint
PredictValue = 50.49522
xPoint = 3.99900 yPoint
PredictValue = 50.42306
xPoint = 3.99900 yPoint
PredictValue = 50.34821
xPoint = 3.99900 yPoint
PredictValue = 50.27126
xPoint = 3.99900 yPoint
PredictValue = 50.19279
xPoint = 3.99900 yPoint
PredictValue = 50.11333
xPoint = 3.99900 yPoint
PredictValue = 50.03337

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

= 3.59900
DiffPerc =
= 3.61900
DiffPerc =
= 3.63900
DiffPerc =
= 3.65900
DiffPerc =
= 3.67900
DiffPerc =
= 3.69900
DiffPerc =
= 3.71900
DiffPerc =
= 3.73900
DiffPerc =
= 3.75900
DiffPerc =
= 3.77900
DiffPerc =
= 3.79900
DiffPerc =
= 3.81900
DiffPerc =
= 3.83900
DiffPerc =
= 3.85900
DiffPerc =
= 3.87900
DiffPerc =
= 3.89900
DiffPerc =
= 3.91900
DiffPerc =

Dy Prof Engr My

TargetValue
0.00986
TargetValue
0.00632
TargetValue
0.00265
TargetValue
8.08563
TargetValue
0.00378
TargetValue
0.00601
TargetValue
0.00735
TargetValue
0.00773
TargetValue
0.00719
TargetValue
0.00588
TargetValue
0.00402
TargetValue
0.00188
TargetValue
2.51335
TargetValue
0.00213
TargetValue
0.00358
TargetValue
0.00452
TargetValue
0.00499

Saniosh Kumar

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

96760

94433

91503

87988

83910

79296

74175

68579

62546

56112

49319

42211

34834

27233

19459

11560

03587

559

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

xPoint = 3.99900 yPoint = 3.93900 TargetValue = 49.95591
PredictValue = 49.95333 DiffPerc = 0.00517
xPoint = 3.99900 yPoint = 3.95900 TargetValue = 49.87624
PredictValue = 49.87355 DiffPerc = 0.00538
xPoint = 3.99900 yPoint = 3.97900 TargetValue = 49.79735
PredictValue = 49.79433 DiffPerc = 0.00607
xPoint = 3.99900 yPoint = 3.99900 TargetValue = 49.71976

PredictValue = 49.71588 DiffPerc = 0.00781

maxErrorPerc = 0.06317757842407223
averErrorPerc = 0.007356218626151153

Figure 12-5 shows the projected chart of the testing results.

g @
z 3
|

ety

$adst
o
ol
&

-
vV
Asaras
e v
-

b

VeVVes

;‘ 2333
49.80 — - I‘J:
s drinest 4 <
:‘ LS ED DS :
49.60 — SEE 4 p
o

.- - >

> 4 BT aEE 3
=1 L el i o P 4
49.40 o Db 4 E NG 9
. wr s p > G ;
-« - e e e 5
- o oe ol s e -

& [b 4 =

- EEE

- 4 E 3

anm-aa
..

e
Y
e
P
L
PR
v
-
TVEYW

4920 —

g gsusiuniian:
‘I “Ef ;%r% $33

49,00 —

I | | [| | [I I | |

3.00 ERD) 320 330 340 3s0 3.60 1% 3s0 390 4.00
X

< Actual data
Predict data

Figure 12-5. Projected chart of the testing results

The approximation results are acceptable; therefore, there is no need to use the
micro-batch method.

560

Dr Prof Engr Mr Saniosh Kumar

CHAPTER 12 APPROXIMATION OF FUNCTIONS IN 3D SPACE

Summary

This chapter discussed how to use a neural network to approximate functions in 3D
space. You learned that the approximation of functions in 3D space (functions with two
variables) is done similarly to the approximation of functions in 2D space. The only
difference is that the network architecture should include two inputs, and the training
and testing data sets should include records for all the possible combinations of x and y
values. These results can be extended for the approximation of functions with more than
two variables.

561

Dy Profl Engr Mr Santosh Kumar

Index

A

Activation functions, network, See also
Sigmoid function; Logistic
function, 3

Actual/target values, 11

Approximating periodic functions

error limit, 156

network architecture, 137-138

network error, 157

normalized testing data set, 137

normalized training data set, 135-136

pair data set looping, 158-160

program code, 138-155

testing results, 162-163

training data, 134

training method, 156

training results, 160-161

transformed testing data set, 136

transformed training data set, 135
Artificial intelligence, 45, 393
Artificial neuron, 2

B

Backpropagation, 15
Backward-pass calculation
hidden layer
biases, 36-38
weight adjustment, 31-36

output layer, weight adjustment, 27-31

Biological neuron, 2

© Igor Livshin 2019

C

Chart series, 98-99
Classification of records, 393-395
Complex periodic function
data preparation, 168-169
function topology
data sets, sliding window, 171
normalized data sets, 173
sliding window, 169-170
function values, 166-167
network architecture, 176
program code, 176-195
testing network, 202-204
training method, 196-200
training network, 200-202
Continuous function
chart, 290
micro-batch method (see
Micro-batch method)
network architecture, 292
program code, 293-306
testing data set, 291-292
training data set, 290-291
training results, 307-310
CSV format, 56

D

Debugging and execution
breakpoint, 100
execution method, 100

563

L. Livshin, Artificial Neural Networks with Java, https://doi.org/10.1007/978-1-4842-4421-0

Dy Profl Engr Mr Santosh Kumar

INDEX

Denormalization, 97-98, 197
denormPredictXPointValue, 98
denormTargetXPointValue, 98
3D space function
chart, 531
data preparation, 532
network architecture, 537-538
program code, 538-553
testing data set, 535-537
testing results, 557-560
training data set, 532-535
training results, 553-555, 557
values, 556
vector, 22

E

Encog Java framework, 51-52
Error function
global minimums, 43-45
local minimums, 43-45
Error limit, 15, 206
Exchange-traded fund (ETF), 449

F

Forecasting/extrapolation, 109
Forward-pass calculation
hidden layer, 24-25, 38-39
outer layer, 25-26, 39-42
Function approximation, 107-108
Java
data set, 56-57
Encog, 56
xPoints, 57

G, H

getChart() method, 255, 257-261
Global minimums, 44

564

Input data sets, normalization, 58

J, K

Java 11 Environment, 47-50

L

lastFunctionValueForTraining
variable, 202

Linear relay, 96

loadAndTestNetwork() method, 93

Local minimums, 44

Logarithmic function, 96

Logistic function, 3

Macro-batch method
training results, 311-314, 384-387
Micro-batch method, 232
approximation, 362-384
chart, 314
getChart() method, 257-261
program code, 233-256
testing process, 314-340
testing results, 279-281, 388-392
training method, 262-263
training results, 269, 314, 387-388
Mini-batches, 45
MLDataPair, 97
Model selection
building micro-batch files, 459-464
function topology, 457-459
network architecture, 465
program code, 466-500
SPY ETF prices, 450
testing logic, 514-523

Dy Profl Engr Mr Santosh Kumar

testing results, 524-529
training process, 500-501
training results, 502-509

N

NetBeans, 50-51
Network architecture, 57, 211-212
network.CalculateError() method, 158
Network input, 2
Network predicted value, 11
Network testing
results, 106-107
testing method, 103-106
test mode, 102-103
Network training logic, 95-99
Neural network development
building, program
Encog JAR files, 73-74
Encog package, 73
global library, 76-77
import statements, 72
JAR files, 76
Java program, 71
NetBeans IDE, 69
program code, 77-91
project creation, 70
training method, code, 93
training process, results, 101-102
XChart JAR files, 75
XChart package, 75
Neural network processing
backpropagation, 15-16
building, 9
function derivative and
divergent, 16-19
function value, 7-8
indexes, 9-10
inputrecord 1, 11-12

INDEX

inputrecord 2, 12-13
inputrecord 3, 13-14
inputrecord 4, 14-15
manual
backward-pass calculation (see
Backward-pass calculation)
building, 22-24
error function, 24
error limit, 42-45
forward-pass calculation (see
Forward-pass calculation)
matrix form, 42
mini-batches, 45
output, 10-11
passes, 10

Noncontinuous function,

approximation
charts, 208
coding, 212-226
input data set fragment, 209-210
low-quality function, 231-232
micro-batch method, 232-233
normalized input data set
fragment, 210-211
training method, 226-229
training results, 230-232

Normalization, data sets

NetBeans IDE, 58-59
program code, 63-67
project, 59-63
testing data set, 68
training data set, 68

Objects classification

example, 393-395
network architecture, 399
normalization

565

Dy Profl Engr Mr Santosh Kumar

INDEX

Objects classification (cont.)
program code, 401-404
testing data set, 406
training data set, 405

program code, 407-425

testing data set, 399-400
testing method, 432-435
testing results, 446-447
training data set, 395-398
training method, 425-431
training/validation results, 436

PQ

Periodic functions approximation, outside

training value
function values, 110-112
network architecture, 114
network testing, 132-133
normalized testing data set, 113

normalized training data set, 112-113

program code, 114-131

technique (see Approximating periodic

functions)
training processing, 131
training result, 131

Predicted function value, 132, 137, 168

R
Resilient propagation, 96
returnCode value, 155, 157

566

S

Sigmoid function, 3, 96
Sliding window
record, 169-170
Spiral-like function, 341
multiple values, 341
network architecture, 344-345
program code, 345-359
testing data set, 343-344
training data set, 342-343
training results, 360-362

TUV
Testing data set
fragment of Normalized, 511-512
fragment of price
difference, 509, 511
train.getError() method, 158, 500
trainValidateSaveNetwork()
method, 93

W

workingMode value, 94-95

XY Z
XChart package, 91-92, 155

installation, 52-53
xPoints, 133, 158, 168

Dy Profl Engr Mr Santosh Kumar

% I — E: |
__ ___
7 0

L £
D ?
. ¥
< , y <
- -

W Artificial

' Intelligence
v ¢ 4

According to the father of Artificial Intelligence, John McCarthy, it is “The
science and engineering of making intelligent machines, especially
intelligent computer programs”

People who are really serious about software should make their own hardware

Author

Dr Prof Engr Mr Santosh Kumar
Senior Technical Officer, Hindustan Aeronautics Limited

Former Software Developer (Microsoft, New York, USA)

